银催化和二氟化碳促进的酰胺-酰亚胺重排:合成 3-水杨酰吡啶

IF 4.6 1区 化学 Q1 CHEMISTRY, ORGANIC
Xu Yuan, Tong Zhou, Qiaoqiao Wang, Yu Chen, Xiaohong Cheng, Yi Jin
{"title":"银催化和二氟化碳促进的酰胺-酰亚胺重排:合成 3-水杨酰吡啶","authors":"Xu Yuan, Tong Zhou, Qiaoqiao Wang, Yu Chen, Xiaohong Cheng, Yi Jin","doi":"10.1039/d4qo01961j","DOIUrl":null,"url":null,"abstract":"Herein, we report an Ag-catalyzed and difluorocarbene-promoted amide-ylide rearrangement strategy. This strategy utilizes an unconventional transformation between difluorocarbene and amide functionalities to successfully synthesize 3-salicyloylpyridines. Preliminary mechanistic studies suggest that the reaction initially involves the coordination of the amide with the metal, followed by a reaction with difluorocarbene to form the RNCF2H intermediate, which then facilitates the formation of the N-ylide intermediate, a crucial step for the synthesis of the target compound. Subsequently, selective C–N bond cleavage is followed by a rearrangement and elimination of formaldehyde. This rearrangement strategy demonstrates broad substrate applicability. Under identical reaction conditions, it enables the reaction of chromones with various β-ketones (such as 1,3-dicarbonyl compounds, β-keto esters, acetophenone, acetone, pentanone, and 2-Bromoacetophenone) to produce 3-salicyloylpyridines (>47 examples, up to 91% yield), showing excellent efficiency and functional group tolerance.","PeriodicalId":97,"journal":{"name":"Organic Chemistry Frontiers","volume":"18 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ag-Catalyzed and Difluorocarbene-Promoted Amide-Ylide Rearrangement: Synthesis of 3-Salicyloylpyridines\",\"authors\":\"Xu Yuan, Tong Zhou, Qiaoqiao Wang, Yu Chen, Xiaohong Cheng, Yi Jin\",\"doi\":\"10.1039/d4qo01961j\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Herein, we report an Ag-catalyzed and difluorocarbene-promoted amide-ylide rearrangement strategy. This strategy utilizes an unconventional transformation between difluorocarbene and amide functionalities to successfully synthesize 3-salicyloylpyridines. Preliminary mechanistic studies suggest that the reaction initially involves the coordination of the amide with the metal, followed by a reaction with difluorocarbene to form the RNCF2H intermediate, which then facilitates the formation of the N-ylide intermediate, a crucial step for the synthesis of the target compound. Subsequently, selective C–N bond cleavage is followed by a rearrangement and elimination of formaldehyde. This rearrangement strategy demonstrates broad substrate applicability. Under identical reaction conditions, it enables the reaction of chromones with various β-ketones (such as 1,3-dicarbonyl compounds, β-keto esters, acetophenone, acetone, pentanone, and 2-Bromoacetophenone) to produce 3-salicyloylpyridines (>47 examples, up to 91% yield), showing excellent efficiency and functional group tolerance.\",\"PeriodicalId\":97,\"journal\":{\"name\":\"Organic Chemistry Frontiers\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Organic Chemistry Frontiers\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1039/d4qo01961j\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ORGANIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Chemistry Frontiers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4qo01961j","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0

摘要

在此,我们报告了一种在 Ag 催化和二氟碳促进下的酰胺酰基重排策略。该策略利用二氟碳和酰胺官能团之间的非常规转化,成功合成了 3-水杨酰吡啶。初步的机理研究表明,该反应首先涉及酰胺与金属的配位,然后与二氟羰基反应形成 RNCF2H 中间体,然后促进 N-酰基中间体的形成,这是合成目标化合物的关键步骤。随后,在选择性 C-N 键裂解之后进行重排并消除甲醛。这种重排策略具有广泛的底物适用性。在相同的反应条件下,它能使色酮与各种 β-酮(如 1,3-二羰基化合物、β-酮酯、苯乙酮、丙酮、戊酮和 2-溴苯乙酮)反应,生成 3-水杨酰吡啶(47 个实例,收率高达 91%),显示出卓越的效率和官能团耐受性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ag-Catalyzed and Difluorocarbene-Promoted Amide-Ylide Rearrangement: Synthesis of 3-Salicyloylpyridines
Herein, we report an Ag-catalyzed and difluorocarbene-promoted amide-ylide rearrangement strategy. This strategy utilizes an unconventional transformation between difluorocarbene and amide functionalities to successfully synthesize 3-salicyloylpyridines. Preliminary mechanistic studies suggest that the reaction initially involves the coordination of the amide with the metal, followed by a reaction with difluorocarbene to form the RNCF2H intermediate, which then facilitates the formation of the N-ylide intermediate, a crucial step for the synthesis of the target compound. Subsequently, selective C–N bond cleavage is followed by a rearrangement and elimination of formaldehyde. This rearrangement strategy demonstrates broad substrate applicability. Under identical reaction conditions, it enables the reaction of chromones with various β-ketones (such as 1,3-dicarbonyl compounds, β-keto esters, acetophenone, acetone, pentanone, and 2-Bromoacetophenone) to produce 3-salicyloylpyridines (>47 examples, up to 91% yield), showing excellent efficiency and functional group tolerance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Organic Chemistry Frontiers
Organic Chemistry Frontiers CHEMISTRY, ORGANIC-
CiteScore
7.90
自引率
11.10%
发文量
686
审稿时长
1 months
期刊介绍: Organic Chemistry Frontiers is an esteemed journal that publishes high-quality research across the field of organic chemistry. It places a significant emphasis on studies that contribute substantially to the field by introducing new or significantly improved protocols and methodologies. The journal covers a wide array of topics which include, but are not limited to, organic synthesis, the development of synthetic methodologies, catalysis, natural products, functional organic materials, supramolecular and macromolecular chemistry, as well as physical and computational organic chemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信