Josep M. Ribó, David Hochberg, Thomas Buhse, Jean Claude Micheau
{"title":"自组装过程中的维德玛脱模机制","authors":"Josep M. Ribó, David Hochberg, Thomas Buhse, Jean Claude Micheau","doi":"10.1039/d4cp03910f","DOIUrl":null,"url":null,"abstract":"Simulations on an ODE-based model shows that there are many common points between Viedma deracemization and chiral self-assemblies of achiral building blocks towards chiral nanoparticles. Both systems occur in a closed system with energy exchange but no matter exchange with the surroundings and show parallel reversible growth mechanisms which coexist with an irreversible cluster breaking (grinding). The various mechanisms of growth give rise to the formation of polymerization / depolymerization cycles while the consecutive transformation of achiral monomer into chiral cluster results into an indirect enantioselective autocatalysis. Deracemization occurs by the destabilization of the racemic non-equilibrium stationary state likely because of the excess of entropy production generated by the coupling of the reversible cluster growth mechanisms with grinding. Results show that the SMSB bias from the racemic composition occurs already at the oligomeric level of polymerization. Our model goes beyond the scope of the effect of grinding by the stirring of solutions which is thoroughly reported in supramolecular chirality. For instance, some unique characteristics, as those of a SMSB in closed systems, the simultaneous presence of different coupled reversible growth mechanisms, the activation by a depolymerization agent and the reincorporation of oligomers to the polymer growth reactions, could be adapted to replicator selectivity and to the emergence of biological homochirality scenarios.","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":"1 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Viedma deracemization mechanisms in self-assembly processes\",\"authors\":\"Josep M. Ribó, David Hochberg, Thomas Buhse, Jean Claude Micheau\",\"doi\":\"10.1039/d4cp03910f\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Simulations on an ODE-based model shows that there are many common points between Viedma deracemization and chiral self-assemblies of achiral building blocks towards chiral nanoparticles. Both systems occur in a closed system with energy exchange but no matter exchange with the surroundings and show parallel reversible growth mechanisms which coexist with an irreversible cluster breaking (grinding). The various mechanisms of growth give rise to the formation of polymerization / depolymerization cycles while the consecutive transformation of achiral monomer into chiral cluster results into an indirect enantioselective autocatalysis. Deracemization occurs by the destabilization of the racemic non-equilibrium stationary state likely because of the excess of entropy production generated by the coupling of the reversible cluster growth mechanisms with grinding. Results show that the SMSB bias from the racemic composition occurs already at the oligomeric level of polymerization. Our model goes beyond the scope of the effect of grinding by the stirring of solutions which is thoroughly reported in supramolecular chirality. For instance, some unique characteristics, as those of a SMSB in closed systems, the simultaneous presence of different coupled reversible growth mechanisms, the activation by a depolymerization agent and the reincorporation of oligomers to the polymer growth reactions, could be adapted to replicator selectivity and to the emergence of biological homochirality scenarios.\",\"PeriodicalId\":99,\"journal\":{\"name\":\"Physical Chemistry Chemical Physics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Chemistry Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1039/d4cp03910f\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4cp03910f","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Viedma deracemization mechanisms in self-assembly processes
Simulations on an ODE-based model shows that there are many common points between Viedma deracemization and chiral self-assemblies of achiral building blocks towards chiral nanoparticles. Both systems occur in a closed system with energy exchange but no matter exchange with the surroundings and show parallel reversible growth mechanisms which coexist with an irreversible cluster breaking (grinding). The various mechanisms of growth give rise to the formation of polymerization / depolymerization cycles while the consecutive transformation of achiral monomer into chiral cluster results into an indirect enantioselective autocatalysis. Deracemization occurs by the destabilization of the racemic non-equilibrium stationary state likely because of the excess of entropy production generated by the coupling of the reversible cluster growth mechanisms with grinding. Results show that the SMSB bias from the racemic composition occurs already at the oligomeric level of polymerization. Our model goes beyond the scope of the effect of grinding by the stirring of solutions which is thoroughly reported in supramolecular chirality. For instance, some unique characteristics, as those of a SMSB in closed systems, the simultaneous presence of different coupled reversible growth mechanisms, the activation by a depolymerization agent and the reincorporation of oligomers to the polymer growth reactions, could be adapted to replicator selectivity and to the emergence of biological homochirality scenarios.
期刊介绍:
Physical Chemistry Chemical Physics (PCCP) is an international journal co-owned by 19 physical chemistry and physics societies from around the world. This journal publishes original, cutting-edge research in physical chemistry, chemical physics and biophysical chemistry. To be suitable for publication in PCCP, articles must include significant innovation and/or insight into physical chemistry; this is the most important criterion that reviewers and Editors will judge against when evaluating submissions.
The journal has a broad scope and welcomes contributions spanning experiment, theory, computation and data science. Topical coverage includes spectroscopy, dynamics, kinetics, statistical mechanics, thermodynamics, electrochemistry, catalysis, surface science, quantum mechanics, quantum computing and machine learning. Interdisciplinary research areas such as polymers and soft matter, materials, nanoscience, energy, surfaces/interfaces, and biophysical chemistry are welcomed if they demonstrate significant innovation and/or insight into physical chemistry. Joined experimental/theoretical studies are particularly appreciated when complementary and based on up-to-date approaches.