IF 2.9 3区 化学 Q3 CHEMISTRY, PHYSICAL
Zi Wang, Shuang Li, Shiwu Gao, Jiaye Su
{"title":"Length-dependent water permeation through a graphene channel","authors":"Zi Wang, Shuang Li, Shiwu Gao, Jiaye Su","doi":"10.1039/d4cp03920c","DOIUrl":null,"url":null,"abstract":"Water confined in two-dimensional channels exhibits unique properties, such as rich morphology, specific phase transition and a low dielectric constant. In this work, molecular dynamics simulations have been used to study the water transport in two-dimensional graphene channels. The structures and dynamics of water under confinement show strong dependence on the channel length and thickness of the channels. In particular, there exists a critical channel length beyond which monolayer water forms square-like ice structures, leading to the rapid decrease in water flow that eventually ceases completely. The water flow for double-layer and three-layer systems exhibits a similar exponential decay but does not reach zero. The translocation time exhibits an excellent power-law behavior with an increase in the channel length, accounting for the exponential flow decay. The radial distribution function confirms the length-dependent liquid-to-ice phase transition of monolayer water and the liquid states for double-layer and three-layer systems. The formation of monolayer ice can be further supported by the increasing barriers in the potential of mean force and specific dipole distributions. Furthermore, the melting temperature of monolayer ice increases significantly with the increase in the channel length that can also be close to or even exceeds the boiling point at atmospheric pressure. These findings provide new physical insights into the extraordinary length-dependent water behaviors and suggest future experimental studies on high-temperature ice through the size control in nanochannels.","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":"25 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4cp03920c","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

封闭在二维通道中的水具有独特的性质,如丰富的形态、特定的相变和较低的介电常数。在这项工作中,我们利用分子动力学模拟研究了水在二维石墨烯通道中的传输。水在限制条件下的结构和动力学表现出与通道长度和厚度的强烈依赖性。特别是,存在一个临界通道长度,单层水在超过该长度后会形成类似方形冰的结构,导致水流迅速减少并最终完全停止。双层和三层系统的水流呈现类似的指数衰减,但并没有达到零。随着通道长度的增加,转位时间呈现出极好的幂律行为,这也是指数流量衰减的原因。径向分布函数证实了单层水以及双层和三层系统的液态到冰态的相变与长度有关。平均力和比偶极子分布势垒的增加进一步支持了单层冰的形成。此外,随着通道长度的增加,单层冰的熔化温度也会显著增加,甚至接近或超过大气压下的沸点。这些发现为了解水的非凡长度依赖行为提供了新的物理见解,并为今后通过纳米通道尺寸控制进行高温冰的实验研究提供了建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Length-dependent water permeation through a graphene channel

Length-dependent water permeation through a graphene channel
Water confined in two-dimensional channels exhibits unique properties, such as rich morphology, specific phase transition and a low dielectric constant. In this work, molecular dynamics simulations have been used to study the water transport in two-dimensional graphene channels. The structures and dynamics of water under confinement show strong dependence on the channel length and thickness of the channels. In particular, there exists a critical channel length beyond which monolayer water forms square-like ice structures, leading to the rapid decrease in water flow that eventually ceases completely. The water flow for double-layer and three-layer systems exhibits a similar exponential decay but does not reach zero. The translocation time exhibits an excellent power-law behavior with an increase in the channel length, accounting for the exponential flow decay. The radial distribution function confirms the length-dependent liquid-to-ice phase transition of monolayer water and the liquid states for double-layer and three-layer systems. The formation of monolayer ice can be further supported by the increasing barriers in the potential of mean force and specific dipole distributions. Furthermore, the melting temperature of monolayer ice increases significantly with the increase in the channel length that can also be close to or even exceeds the boiling point at atmospheric pressure. These findings provide new physical insights into the extraordinary length-dependent water behaviors and suggest future experimental studies on high-temperature ice through the size control in nanochannels.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Chemistry Chemical Physics
Physical Chemistry Chemical Physics 化学-物理:原子、分子和化学物理
CiteScore
5.50
自引率
9.10%
发文量
2675
审稿时长
2.0 months
期刊介绍: Physical Chemistry Chemical Physics (PCCP) is an international journal co-owned by 19 physical chemistry and physics societies from around the world. This journal publishes original, cutting-edge research in physical chemistry, chemical physics and biophysical chemistry. To be suitable for publication in PCCP, articles must include significant innovation and/or insight into physical chemistry; this is the most important criterion that reviewers and Editors will judge against when evaluating submissions. The journal has a broad scope and welcomes contributions spanning experiment, theory, computation and data science. Topical coverage includes spectroscopy, dynamics, kinetics, statistical mechanics, thermodynamics, electrochemistry, catalysis, surface science, quantum mechanics, quantum computing and machine learning. Interdisciplinary research areas such as polymers and soft matter, materials, nanoscience, energy, surfaces/interfaces, and biophysical chemistry are welcomed if they demonstrate significant innovation and/or insight into physical chemistry. Joined experimental/theoretical studies are particularly appreciated when complementary and based on up-to-date approaches.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信