利用突变位点附近的序列信息,对与听力损失相关的变异进行分类和预测。

Xiao Liu, Li Teng, Jing Sun
{"title":"利用突变位点附近的序列信息,对与听力损失相关的变异进行分类和预测。","authors":"Xiao Liu, Li Teng, Jing Sun","doi":"10.1016/j.compbiolchem.2024.108321","DOIUrl":null,"url":null,"abstract":"<p><p>Hearing impairment is a major global health problem, affecting more than 5 % of the world's population at various ages, from neonates to the elderly. Among the common genetic variations in humans, single nucleotide variations and small insertions or deletions predominate. The study of hearing loss resulting from these variations is proving invaluable in the analysis and diagnosis of hearing disorders. The identification of pathogenic mutations is frequently a lengthy and laborious process. Existing computational prediction tools have been developed primarily for common diseases and genome-wide analyses, with less focus on deafness. This study proposes a novel approach that focuses on the regions surrounding mutation sites. Mutation sites associated with deafness and their flanking regions of different lengths were extracted from relevant databases and combined into seven distinct segments of different lengths. The information-theoretic features of these segments were computed. Five machine learning algorithms were then used for training, resulting in the construction of a model capable of classifying and predicting deafness-related mutations. For fragments encompassing the 250 bp regions upstream and downstream of the mutations, the average AUC of the five classifiers on the independent test set is 0.89 and the average ACC is 0.85, indicating that the model has a high recognition rate of the pathogenic deafness mutation site. An ensemble approach was also applied to predict variants of uncertain significance (VUS) that may be associated with deafness. These variants were then scored and ranked to assess their likelihood of contributing to the condition.</p>","PeriodicalId":93952,"journal":{"name":"Computational biology and chemistry","volume":"115 ","pages":"108321"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classification and prediction of variants associated with hearing loss using sequence information in the vicinity of mutation sites.\",\"authors\":\"Xiao Liu, Li Teng, Jing Sun\",\"doi\":\"10.1016/j.compbiolchem.2024.108321\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hearing impairment is a major global health problem, affecting more than 5 % of the world's population at various ages, from neonates to the elderly. Among the common genetic variations in humans, single nucleotide variations and small insertions or deletions predominate. The study of hearing loss resulting from these variations is proving invaluable in the analysis and diagnosis of hearing disorders. The identification of pathogenic mutations is frequently a lengthy and laborious process. Existing computational prediction tools have been developed primarily for common diseases and genome-wide analyses, with less focus on deafness. This study proposes a novel approach that focuses on the regions surrounding mutation sites. Mutation sites associated with deafness and their flanking regions of different lengths were extracted from relevant databases and combined into seven distinct segments of different lengths. The information-theoretic features of these segments were computed. Five machine learning algorithms were then used for training, resulting in the construction of a model capable of classifying and predicting deafness-related mutations. For fragments encompassing the 250 bp regions upstream and downstream of the mutations, the average AUC of the five classifiers on the independent test set is 0.89 and the average ACC is 0.85, indicating that the model has a high recognition rate of the pathogenic deafness mutation site. An ensemble approach was also applied to predict variants of uncertain significance (VUS) that may be associated with deafness. These variants were then scored and ranked to assess their likelihood of contributing to the condition.</p>\",\"PeriodicalId\":93952,\"journal\":{\"name\":\"Computational biology and chemistry\",\"volume\":\"115 \",\"pages\":\"108321\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational biology and chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.compbiolchem.2024.108321\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational biology and chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.compbiolchem.2024.108321","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classification and prediction of variants associated with hearing loss using sequence information in the vicinity of mutation sites.

Hearing impairment is a major global health problem, affecting more than 5 % of the world's population at various ages, from neonates to the elderly. Among the common genetic variations in humans, single nucleotide variations and small insertions or deletions predominate. The study of hearing loss resulting from these variations is proving invaluable in the analysis and diagnosis of hearing disorders. The identification of pathogenic mutations is frequently a lengthy and laborious process. Existing computational prediction tools have been developed primarily for common diseases and genome-wide analyses, with less focus on deafness. This study proposes a novel approach that focuses on the regions surrounding mutation sites. Mutation sites associated with deafness and their flanking regions of different lengths were extracted from relevant databases and combined into seven distinct segments of different lengths. The information-theoretic features of these segments were computed. Five machine learning algorithms were then used for training, resulting in the construction of a model capable of classifying and predicting deafness-related mutations. For fragments encompassing the 250 bp regions upstream and downstream of the mutations, the average AUC of the five classifiers on the independent test set is 0.89 and the average ACC is 0.85, indicating that the model has a high recognition rate of the pathogenic deafness mutation site. An ensemble approach was also applied to predict variants of uncertain significance (VUS) that may be associated with deafness. These variants were then scored and ranked to assess their likelihood of contributing to the condition.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信