IF 2.4 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Bioinformatics advances Pub Date : 2024-11-04 eCollection Date: 2024-01-01 DOI:10.1093/bioadv/vbae163
Zhiliang Xia, Shiqiang Ma, Jiawei Li, Yan Guo, Limin Jiang, Jijun Tang
{"title":"RecGOBD: accurate recognition of gene ontology related brain development protein functions through multi-feature fusion and attention mechanisms.","authors":"Zhiliang Xia, Shiqiang Ma, Jiawei Li, Yan Guo, Limin Jiang, Jijun Tang","doi":"10.1093/bioadv/vbae163","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Protein function prediction is crucial in bioinformatics, driven by the growth of protein sequence data from high-throughput technologies. Traditional methods are costly and slow, underscoring the need for computational solutions. While deep learning offers powerful tools, many models lack optimization for brain development datasets, critical for neurodevelopmental disorder research. To address this, we developed RecGOBD (Recognition of Gene Ontology-related Brain Development protein function), a model tailored to predict protein functions essential to brain development.</p><p><strong>Result: </strong>RecGOBD targets 10 key gene ontology (GO) terms for brain development, embedding protein sequences associated with these terms. Leveraging advanced pre-trained models, it captures both sequence and structure data, aligning them with GO terms through attention mechanisms. The category attention layer enhances prediction accuracy. RecGOBD surpassed five benchmark models in AUROC, AUPR, and Fmax metrics and was further used to predict autism-related protein functions and assess mutation impacts on GO terms. These findings highlight RecGOBD's potential in advancing protein function prediction for neurodevelopmental disorders.</p><p><strong>Availability and implementation: </strong>All Python codes associated with this study are available at https://github.com/ZL-Xia/RECGOBD.git.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":"4 1","pages":"vbae163"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11639192/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbae163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

动机在高通量技术带来的蛋白质序列数据增长的推动下,蛋白质功能预测在生物信息学中至关重要。传统方法成本高、速度慢,凸显了对计算解决方案的需求。虽然深度学习提供了强大的工具,但许多模型缺乏对大脑发育数据集的优化,而这对神经发育障碍研究至关重要。为了解决这个问题,我们开发了 RecGOBD(基因本体相关脑发育蛋白功能识别),这是一个为预测对脑发育至关重要的蛋白功能而量身定制的模型:RecGOBD 针对大脑发育的 10 个关键基因本体(GO)术语,嵌入了与这些术语相关的蛋白质序列。利用先进的预训练模型,它可以捕捉序列和结构数据,并通过注意机制将它们与 GO 术语对齐。类别关注层提高了预测的准确性。RecGOBD 在 AUROC、AUPR 和 Fmax 指标上超过了五个基准模型,并被进一步用于预测自闭症相关蛋白质的功能和评估突变对 GO 术语的影响。这些发现凸显了 RecGOBD 在推进神经发育障碍蛋白质功能预测方面的潜力:与本研究相关的所有 Python 代码均可在 https://github.com/ZL-Xia/RECGOBD.git 上获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
RecGOBD: accurate recognition of gene ontology related brain development protein functions through multi-feature fusion and attention mechanisms.

Motivation: Protein function prediction is crucial in bioinformatics, driven by the growth of protein sequence data from high-throughput technologies. Traditional methods are costly and slow, underscoring the need for computational solutions. While deep learning offers powerful tools, many models lack optimization for brain development datasets, critical for neurodevelopmental disorder research. To address this, we developed RecGOBD (Recognition of Gene Ontology-related Brain Development protein function), a model tailored to predict protein functions essential to brain development.

Result: RecGOBD targets 10 key gene ontology (GO) terms for brain development, embedding protein sequences associated with these terms. Leveraging advanced pre-trained models, it captures both sequence and structure data, aligning them with GO terms through attention mechanisms. The category attention layer enhances prediction accuracy. RecGOBD surpassed five benchmark models in AUROC, AUPR, and Fmax metrics and was further used to predict autism-related protein functions and assess mutation impacts on GO terms. These findings highlight RecGOBD's potential in advancing protein function prediction for neurodevelopmental disorders.

Availability and implementation: All Python codes associated with this study are available at https://github.com/ZL-Xia/RECGOBD.git.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信