Isabel Gordaliza-Alaguero, Paula Sànchez-Fernàndez-de-Landa, Dragana Radivojevikj, Laura Villarreal, Gianluca Arauz-Garofalo, Marina Gay, Marta Martinez-Vicente, Jorge Seco, Pau Martin-Malpartida, Marta Vilaseca, María J Macías, Manuel Palacin, Saška Ivanova, Antonio Zorzano
{"title":"MFN1和MFN2的内源相互作用组提供了关于细胞器间通讯和自噬的新见解。","authors":"Isabel Gordaliza-Alaguero, Paula Sànchez-Fernàndez-de-Landa, Dragana Radivojevikj, Laura Villarreal, Gianluca Arauz-Garofalo, Marina Gay, Marta Martinez-Vicente, Jorge Seco, Pau Martin-Malpartida, Marta Vilaseca, María J Macías, Manuel Palacin, Saška Ivanova, Antonio Zorzano","doi":"10.1080/15548627.2024.2440843","DOIUrl":null,"url":null,"abstract":"<p><p>MFN1 (mitofusin 1) and MFN2 are key players in mitochondrial fusion, endoplasmic reticulum (ER)-mitochondria juxtaposition, and macroautophagy/autophagy. However, the mechanisms by which these proteins participate in these processes are poorly understood. Here, we studied the interactomes of these two proteins by using CRISPR-Cas9 technology to insert an HA-tag at the C terminus of MFN1 and MFN2, and thus generating HeLa cell lines that endogenously expressed MFN1-HA or MFN2-HA. HA-affinity isolation followed by mass spectrometry identified potential interactors of MFN1 and MFN2. A substantial proportion of interactors were common for MFN1 and MFN2 and were regulated by nutrient deprivation. We validated novel ER and endosomal partners of MFN1 and/or MFN2 with a potential role in interorganelle communication. We characterized RAB5C (RAB5C, member RAS oncogene family) as an endosomal modulator of mitochondrial homeostasis, and SLC27A2 (solute carrier family 27 (fatty acid transporter), member 2) as a novel partner of MFN2 relevant in autophagy. We conclude that MFN proteins participate in nutrient-modulated pathways involved in organelle communication and autophagy.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Endogenous interactomes of MFN1 and MFN2 provide novel insights into interorganelle communication and autophagy.\",\"authors\":\"Isabel Gordaliza-Alaguero, Paula Sànchez-Fernàndez-de-Landa, Dragana Radivojevikj, Laura Villarreal, Gianluca Arauz-Garofalo, Marina Gay, Marta Martinez-Vicente, Jorge Seco, Pau Martin-Malpartida, Marta Vilaseca, María J Macías, Manuel Palacin, Saška Ivanova, Antonio Zorzano\",\"doi\":\"10.1080/15548627.2024.2440843\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>MFN1 (mitofusin 1) and MFN2 are key players in mitochondrial fusion, endoplasmic reticulum (ER)-mitochondria juxtaposition, and macroautophagy/autophagy. However, the mechanisms by which these proteins participate in these processes are poorly understood. Here, we studied the interactomes of these two proteins by using CRISPR-Cas9 technology to insert an HA-tag at the C terminus of MFN1 and MFN2, and thus generating HeLa cell lines that endogenously expressed MFN1-HA or MFN2-HA. HA-affinity isolation followed by mass spectrometry identified potential interactors of MFN1 and MFN2. A substantial proportion of interactors were common for MFN1 and MFN2 and were regulated by nutrient deprivation. We validated novel ER and endosomal partners of MFN1 and/or MFN2 with a potential role in interorganelle communication. We characterized RAB5C (RAB5C, member RAS oncogene family) as an endosomal modulator of mitochondrial homeostasis, and SLC27A2 (solute carrier family 27 (fatty acid transporter), member 2) as a novel partner of MFN2 relevant in autophagy. We conclude that MFN proteins participate in nutrient-modulated pathways involved in organelle communication and autophagy.</p>\",\"PeriodicalId\":93893,\"journal\":{\"name\":\"Autophagy\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Autophagy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/15548627.2024.2440843\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autophagy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15548627.2024.2440843","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Endogenous interactomes of MFN1 and MFN2 provide novel insights into interorganelle communication and autophagy.
MFN1 (mitofusin 1) and MFN2 are key players in mitochondrial fusion, endoplasmic reticulum (ER)-mitochondria juxtaposition, and macroautophagy/autophagy. However, the mechanisms by which these proteins participate in these processes are poorly understood. Here, we studied the interactomes of these two proteins by using CRISPR-Cas9 technology to insert an HA-tag at the C terminus of MFN1 and MFN2, and thus generating HeLa cell lines that endogenously expressed MFN1-HA or MFN2-HA. HA-affinity isolation followed by mass spectrometry identified potential interactors of MFN1 and MFN2. A substantial proportion of interactors were common for MFN1 and MFN2 and were regulated by nutrient deprivation. We validated novel ER and endosomal partners of MFN1 and/or MFN2 with a potential role in interorganelle communication. We characterized RAB5C (RAB5C, member RAS oncogene family) as an endosomal modulator of mitochondrial homeostasis, and SLC27A2 (solute carrier family 27 (fatty acid transporter), member 2) as a novel partner of MFN2 relevant in autophagy. We conclude that MFN proteins participate in nutrient-modulated pathways involved in organelle communication and autophagy.