Louise Pierre, Florian Juszczak, Valentine Delmotte, Morgane Decarnoncle, Benjamin Ledoux, Laurent Bultot, Luc Bertrand, Marielle Boonen, Patricia Renard, Thierry Arnould, Anne-Emilie Declèves
{"title":"AMPK protects proximal tubular epithelial cells from lysosomal dysfunction and dedifferentiation induced by lipotoxicity.","authors":"Louise Pierre, Florian Juszczak, Valentine Delmotte, Morgane Decarnoncle, Benjamin Ledoux, Laurent Bultot, Luc Bertrand, Marielle Boonen, Patricia Renard, Thierry Arnould, Anne-Emilie Declèves","doi":"10.1080/15548627.2024.2435238","DOIUrl":null,"url":null,"abstract":"<p><p>Renal proximal tubules are a primary site of injury in metabolic diseases. In obese patients and animal models, proximal tubular epithelial cells (PTECs) display dysregulated lipid metabolism, organelle dysfunctions, and oxidative stress that contribute to interstitial inflammation, fibrosis and ultimately end-stage renal failure. Our research group previously pointed out AMP-activated protein kinase (AMPK) decline as a driver of obesity-induced renal disease. Because PTECs display high macroautophagic/autophagic activity and rely heavily on their endo-lysosomal system, we investigated the effect of lipid stress on autophagic flux and lysosomes in these cells. Using a model of highly differentiated primary PTECs challenged with palmitate, our data placed lysosomes at the cornerstone of the lipotoxic phenotype. As soon as 6 h after palmitate exposure, cells displayed impaired lysosomal acidification subsequently leading to autophagosome accumulation and activation of lysosomal biogenesis. We also showed the inability of lysosomal quality control to restore acidic pH which finally drove PTECs dedifferentiation. When palmitate-induced AMPK activity decline was prevented by AMPK activators, lysosomal acidification and the differentiation profile of PTECs were preserved. Our work provided key insights on the importance of lysosomes in PTECs homeostasis and lipotoxicity and demonstrated the potential of AMPK in protecting the organelle from lipid stress.<b>Abbreviation</b>: ACAC: acetyl-CoA carboxylase; ACTB: actin beta; AICAR: 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside; AMPK: AMP-activated protein kinase; APQ1: aquaporin 1 (Colton blood group); BSA: bovine serum albumin; CDH16: cadherin 16; CKD: chronic kidney disease; CTSB: cathepsin B; CTSD: cathepsin D; EPB41L5: erythrocyte membrane protein band 4.1 like 5; EIF4EBP1: eukaryotic translation initiation factor 4E binding protein 1; EMT: epithelial-to-mesenchymal transition; FA: fatty acid; FCCP: carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone; GFP: green fluorescent protein; GUSB: glucuronidase beta; HEXB: hexosaminidase subunit beta; LAMP: lysosomal associated membrane protein; LD: lipid droplet; LGALS3: galectin 3; LLOMe: L-leucyl-L-leucine methyl ester hydrobromide; LMP: lysosomal membrane permeabilization; LRP2: LDL receptor related protein 2; LSD: lysosomal storage disorder; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MCOLN1: mucolipin TRP cation channel 1; MG132: N-benzyloxycarbonyl-L-leucyl-L-leucyl-L-leucinal; MmPTECs: Mus musculus (mouse) proximal tubular epithelial cells; MTORC1: mechanistic target of rapamycin kinase complex 1; OA: oleate; PA: palmitate; PIKFYVE: phosphoinositide kinase, FYVE-type zinc finger containing; PTs: proximal tubules; PTECs: proximal tubular epithelial cells; PRKAA: protein kinase AMP-activated catalytic subunit alpha; RFP: red fluorescent protein; RPS6KB: ribosomal protein S6 kinase B; SLC5A2: solute carrier family 5 member 2; SOX9: SRY-box transcription factor 9; SQSTM1: sequestosome 1; TFEB: transcription factor EB; Ub: ubiquitin; ULK1: unc-51 like autophagy activating kinase 1; VIM: vimentin.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":" ","pages":"1-21"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autophagy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15548627.2024.2435238","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

肾近曲小管是代谢性疾病的主要损伤部位。在肥胖患者和动物模型中,近端肾小管上皮细胞(PTECs)表现出脂质代谢失调、细胞器功能紊乱和氧化应激,导致间质炎症、纤维化并最终导致终末期肾衰竭。我们的研究小组以前曾指出,AMP激活蛋白激酶(AMPK)的衰退是肥胖诱发肾病的一个驱动因素。由于 PTECs 表现出较高的大自噬/自噬活性并严重依赖于其内溶酶体系统,我们研究了脂质应激对这些细胞中自噬通量和溶酶体的影响。通过使用棕榈酸酯挑战高度分化的原代 PTEC 模型,我们的数据表明溶酶体是脂毒性表型的基石。暴露于棕榈酸酯后 6 小时,细胞就显示出溶酶体酸化受损,随后导致自噬体积累和溶酶体生物生成的激活。我们还发现溶酶体质量控制无法恢复酸性pH值,这最终导致了PTEC的去分化。当棕榈酸酯诱导的 AMPK 活性下降被 AMPK 激活剂阻止时,溶酶体酸化和 PTECs 的分化特征得以保留。我们的工作提供了关于溶酶体在 PTECs 体内平衡和脂毒性中重要性的重要见解,并证明了 AMPK 在保护细胞器免受脂质应激方面的潜力:缩写:ACAC:乙酰-CoA 羧化酶;ACTB:肌动蛋白 beta;AICAR:5-氨基咪唑-4-甲酰胺-1-β-D-呋喃核苷;AMPK:AMP 激活蛋白激酶;APQ1:水蒸发素 1(科尔顿血型);BSA:CDH16:粘连蛋白 16;CKD:慢性肾脏病;CTSB:凝血酶 B;CTSD:凝血酶 D;EPB41L5:红细胞膜蛋白带 4.1 like 5;EIF4EBP1:真核翻译起始因子 4E 结合蛋白 1;EMT:上皮细胞向间质转化;FA:脂肪酸;FCCP:羰基氰化 4-(三氟甲氧基)苯腙;GFP:绿色荧光蛋白;GUSB:葡萄糖醛酸酶 beta;HEXB:己糖胺酶亚基 beta;LAMP:溶酶体相关膜蛋白;LD:脂滴;LGALS3:galectin 3;LLOMe:L-亮氨酰-L-亮氨酸甲酯氢溴酸盐;LMP:溶酶体膜渗透;LRP2:MG132:N-苄氧羰基-L-亮氨酰-L-亮氨酰-L-亮氨醛酸; MmPTECs:OA:油酸;PA:棕榈酸;PIKFYVE:磷酸肌酸激酶,含 FYVE 型锌指;PTs:近端小管;PTECs:近端小管上皮细胞;PRKAA:RFP:红色荧光蛋白;RPS6KB:核糖体蛋白 S6 激酶 B;SLC5A2:溶质运载家族 5 成员 2;SOX9:SRY-框转录因子 9;SQSTM1:序列体 1;TFEB:转录因子 EB;Ub:泛素;ULK1:unc-51 类自噬激活激酶 1;VIM:波形蛋白。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AMPK protects proximal tubular epithelial cells from lysosomal dysfunction and dedifferentiation induced by lipotoxicity.

Renal proximal tubules are a primary site of injury in metabolic diseases. In obese patients and animal models, proximal tubular epithelial cells (PTECs) display dysregulated lipid metabolism, organelle dysfunctions, and oxidative stress that contribute to interstitial inflammation, fibrosis and ultimately end-stage renal failure. Our research group previously pointed out AMP-activated protein kinase (AMPK) decline as a driver of obesity-induced renal disease. Because PTECs display high macroautophagic/autophagic activity and rely heavily on their endo-lysosomal system, we investigated the effect of lipid stress on autophagic flux and lysosomes in these cells. Using a model of highly differentiated primary PTECs challenged with palmitate, our data placed lysosomes at the cornerstone of the lipotoxic phenotype. As soon as 6 h after palmitate exposure, cells displayed impaired lysosomal acidification subsequently leading to autophagosome accumulation and activation of lysosomal biogenesis. We also showed the inability of lysosomal quality control to restore acidic pH which finally drove PTECs dedifferentiation. When palmitate-induced AMPK activity decline was prevented by AMPK activators, lysosomal acidification and the differentiation profile of PTECs were preserved. Our work provided key insights on the importance of lysosomes in PTECs homeostasis and lipotoxicity and demonstrated the potential of AMPK in protecting the organelle from lipid stress.Abbreviation: ACAC: acetyl-CoA carboxylase; ACTB: actin beta; AICAR: 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside; AMPK: AMP-activated protein kinase; APQ1: aquaporin 1 (Colton blood group); BSA: bovine serum albumin; CDH16: cadherin 16; CKD: chronic kidney disease; CTSB: cathepsin B; CTSD: cathepsin D; EPB41L5: erythrocyte membrane protein band 4.1 like 5; EIF4EBP1: eukaryotic translation initiation factor 4E binding protein 1; EMT: epithelial-to-mesenchymal transition; FA: fatty acid; FCCP: carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone; GFP: green fluorescent protein; GUSB: glucuronidase beta; HEXB: hexosaminidase subunit beta; LAMP: lysosomal associated membrane protein; LD: lipid droplet; LGALS3: galectin 3; LLOMe: L-leucyl-L-leucine methyl ester hydrobromide; LMP: lysosomal membrane permeabilization; LRP2: LDL receptor related protein 2; LSD: lysosomal storage disorder; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MCOLN1: mucolipin TRP cation channel 1; MG132: N-benzyloxycarbonyl-L-leucyl-L-leucyl-L-leucinal; MmPTECs: Mus musculus (mouse) proximal tubular epithelial cells; MTORC1: mechanistic target of rapamycin kinase complex 1; OA: oleate; PA: palmitate; PIKFYVE: phosphoinositide kinase, FYVE-type zinc finger containing; PTs: proximal tubules; PTECs: proximal tubular epithelial cells; PRKAA: protein kinase AMP-activated catalytic subunit alpha; RFP: red fluorescent protein; RPS6KB: ribosomal protein S6 kinase B; SLC5A2: solute carrier family 5 member 2; SOX9: SRY-box transcription factor 9; SQSTM1: sequestosome 1; TFEB: transcription factor EB; Ub: ubiquitin; ULK1: unc-51 like autophagy activating kinase 1; VIM: vimentin.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信