Hongxing Shi, Xiaogang Zhang, Zhenxian Chen, Yali Zhang, Zhongmin Jin
{"title":"PEEK 髋臼壳对全髋关节置换术在步态负荷和运动下机械稳定性的影响。","authors":"Hongxing Shi, Xiaogang Zhang, Zhenxian Chen, Yali Zhang, Zhongmin Jin","doi":"10.1007/s11517-024-03257-y","DOIUrl":null,"url":null,"abstract":"<p><p>The demand for total hip replacement surgery is increasing year by year. However, the issue of hip prosthesis failure, particularly the modular acetabular cup, still exists. The performance and functional requirements of modular acetabular cups have not yet met clinical expectations. This study focused on poly-ether-ether-ketone (PEEK) shells, using finite element methods to investigate their mechanical stability under gait loads and motion, including parameters such as deformation, micromotion, and bone strain. The results showed that a compromise was required among the mechanical performance, stability, and bone integration capabilities of the PEEK shell. As the shell rigidity increased, deformation decreased. However, increased rigidity also increased micromotion at the bone-prosthesis interface, reducing the area that promoted bone ingrowth. Additionally, potential bone absorption areas were also increased, reducing bone preservation and reconstruction capabilities. Compromises need to be made among mechanical performance, stability, and bone integration to achieve optimal mechanical stability. In this study, a 6 mm wall thickness PEEK shell was found to provide good overall mechanical stability.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The influence of PEEK acetabular shell on the mechanical stability of total hip replacements under gait loading and motion.\",\"authors\":\"Hongxing Shi, Xiaogang Zhang, Zhenxian Chen, Yali Zhang, Zhongmin Jin\",\"doi\":\"10.1007/s11517-024-03257-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The demand for total hip replacement surgery is increasing year by year. However, the issue of hip prosthesis failure, particularly the modular acetabular cup, still exists. The performance and functional requirements of modular acetabular cups have not yet met clinical expectations. This study focused on poly-ether-ether-ketone (PEEK) shells, using finite element methods to investigate their mechanical stability under gait loads and motion, including parameters such as deformation, micromotion, and bone strain. The results showed that a compromise was required among the mechanical performance, stability, and bone integration capabilities of the PEEK shell. As the shell rigidity increased, deformation decreased. However, increased rigidity also increased micromotion at the bone-prosthesis interface, reducing the area that promoted bone ingrowth. Additionally, potential bone absorption areas were also increased, reducing bone preservation and reconstruction capabilities. Compromises need to be made among mechanical performance, stability, and bone integration to achieve optimal mechanical stability. In this study, a 6 mm wall thickness PEEK shell was found to provide good overall mechanical stability.</p>\",\"PeriodicalId\":49840,\"journal\":{\"name\":\"Medical & Biological Engineering & Computing\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical & Biological Engineering & Computing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11517-024-03257-y\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11517-024-03257-y","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
The influence of PEEK acetabular shell on the mechanical stability of total hip replacements under gait loading and motion.
The demand for total hip replacement surgery is increasing year by year. However, the issue of hip prosthesis failure, particularly the modular acetabular cup, still exists. The performance and functional requirements of modular acetabular cups have not yet met clinical expectations. This study focused on poly-ether-ether-ketone (PEEK) shells, using finite element methods to investigate their mechanical stability under gait loads and motion, including parameters such as deformation, micromotion, and bone strain. The results showed that a compromise was required among the mechanical performance, stability, and bone integration capabilities of the PEEK shell. As the shell rigidity increased, deformation decreased. However, increased rigidity also increased micromotion at the bone-prosthesis interface, reducing the area that promoted bone ingrowth. Additionally, potential bone absorption areas were also increased, reducing bone preservation and reconstruction capabilities. Compromises need to be made among mechanical performance, stability, and bone integration to achieve optimal mechanical stability. In this study, a 6 mm wall thickness PEEK shell was found to provide good overall mechanical stability.
期刊介绍:
Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging.
MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field.
MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).