PEEK 髋臼壳对全髋关节置换术在步态负荷和运动下机械稳定性的影响。

IF 2.6 4区 医学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Hongxing Shi, Xiaogang Zhang, Zhenxian Chen, Yali Zhang, Zhongmin Jin
{"title":"PEEK 髋臼壳对全髋关节置换术在步态负荷和运动下机械稳定性的影响。","authors":"Hongxing Shi, Xiaogang Zhang, Zhenxian Chen, Yali Zhang, Zhongmin Jin","doi":"10.1007/s11517-024-03257-y","DOIUrl":null,"url":null,"abstract":"<p><p>The demand for total hip replacement surgery is increasing year by year. However, the issue of hip prosthesis failure, particularly the modular acetabular cup, still exists. The performance and functional requirements of modular acetabular cups have not yet met clinical expectations. This study focused on poly-ether-ether-ketone (PEEK) shells, using finite element methods to investigate their mechanical stability under gait loads and motion, including parameters such as deformation, micromotion, and bone strain. The results showed that a compromise was required among the mechanical performance, stability, and bone integration capabilities of the PEEK shell. As the shell rigidity increased, deformation decreased. However, increased rigidity also increased micromotion at the bone-prosthesis interface, reducing the area that promoted bone ingrowth. Additionally, potential bone absorption areas were also increased, reducing bone preservation and reconstruction capabilities. Compromises need to be made among mechanical performance, stability, and bone integration to achieve optimal mechanical stability. In this study, a 6 mm wall thickness PEEK shell was found to provide good overall mechanical stability.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The influence of PEEK acetabular shell on the mechanical stability of total hip replacements under gait loading and motion.\",\"authors\":\"Hongxing Shi, Xiaogang Zhang, Zhenxian Chen, Yali Zhang, Zhongmin Jin\",\"doi\":\"10.1007/s11517-024-03257-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The demand for total hip replacement surgery is increasing year by year. However, the issue of hip prosthesis failure, particularly the modular acetabular cup, still exists. The performance and functional requirements of modular acetabular cups have not yet met clinical expectations. This study focused on poly-ether-ether-ketone (PEEK) shells, using finite element methods to investigate their mechanical stability under gait loads and motion, including parameters such as deformation, micromotion, and bone strain. The results showed that a compromise was required among the mechanical performance, stability, and bone integration capabilities of the PEEK shell. As the shell rigidity increased, deformation decreased. However, increased rigidity also increased micromotion at the bone-prosthesis interface, reducing the area that promoted bone ingrowth. Additionally, potential bone absorption areas were also increased, reducing bone preservation and reconstruction capabilities. Compromises need to be made among mechanical performance, stability, and bone integration to achieve optimal mechanical stability. In this study, a 6 mm wall thickness PEEK shell was found to provide good overall mechanical stability.</p>\",\"PeriodicalId\":49840,\"journal\":{\"name\":\"Medical & Biological Engineering & Computing\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical & Biological Engineering & Computing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11517-024-03257-y\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11517-024-03257-y","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
The influence of PEEK acetabular shell on the mechanical stability of total hip replacements under gait loading and motion.

The demand for total hip replacement surgery is increasing year by year. However, the issue of hip prosthesis failure, particularly the modular acetabular cup, still exists. The performance and functional requirements of modular acetabular cups have not yet met clinical expectations. This study focused on poly-ether-ether-ketone (PEEK) shells, using finite element methods to investigate their mechanical stability under gait loads and motion, including parameters such as deformation, micromotion, and bone strain. The results showed that a compromise was required among the mechanical performance, stability, and bone integration capabilities of the PEEK shell. As the shell rigidity increased, deformation decreased. However, increased rigidity also increased micromotion at the bone-prosthesis interface, reducing the area that promoted bone ingrowth. Additionally, potential bone absorption areas were also increased, reducing bone preservation and reconstruction capabilities. Compromises need to be made among mechanical performance, stability, and bone integration to achieve optimal mechanical stability. In this study, a 6 mm wall thickness PEEK shell was found to provide good overall mechanical stability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Medical & Biological Engineering & Computing
Medical & Biological Engineering & Computing 医学-工程:生物医学
CiteScore
6.00
自引率
3.10%
发文量
249
审稿时长
3.5 months
期刊介绍: Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging. MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field. MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信