Metaxin-2调节果蝇线粒体运输和神经元功能

IF 3.3 3区 生物学 Q2 GENETICS & HEREDITY
Genetics Pub Date : 2024-12-05 DOI:10.1093/genetics/iyae204
Ting Zhang, Ling Li, Xiaoyu Fan, Xinyi Shou, Yina Ruan, Xiaojun Xie
{"title":"Metaxin-2调节果蝇线粒体运输和神经元功能","authors":"Ting Zhang, Ling Li, Xiaoyu Fan, Xinyi Shou, Yina Ruan, Xiaojun Xie","doi":"10.1093/genetics/iyae204","DOIUrl":null,"url":null,"abstract":"<p><p>Metaxins are a family of evolutionarily conserved proteins that reside on the mitochondria outer membrane (MOM) and participate in the protein import into the mitochondria. Metaxin-2 (Mtx2), a member of this family, has been identified as a key component in the machinery for mitochondrial transport in both C. elegans and human neurons. To deepen our understanding of Mtx2's role in neurons, we examined the homologous genes CG5662 and CG8004 in Drosophila. The CG5662 is a non-essential gene while CG8004 null mutants die at late pupal stages. The CG8004 protein is widely expressed throughout the Drosophila nervous system and is targeted to mitochondria. However, neuronal CG8004 is dispensable for animal survival and is partially required for mitochondrial distribution in certain neuropil regions. Conditional knockout of CG8004 in adult gustatory receptor neurons (GRNs) impairs mitochondrial trafficking along GRN axons and diminishes the mitochondrial quantities in axon terminals. The absence of CG8004 also leads to mitochondrial fragmentation within GRN axons, a phenomenon that may be linked to mitochondrial transport through its genetic interaction with the fusion proteins Marf and Opa1. While the removal of neuronal CG8004 is not lethal during the developmental stage, it does have consequences for the lifespan and healthspan of adult Drosophila. At last, double knockout (KO) of CG5662 and CG8004 shows similar phenotypes as the CG8004 single KO, suggesting that CG5662 does not compensate for the loss of CG8004. In summary, our findings suggest that CG8004 plays a conserved and context-dependent role in axonal mitochondrial transport, as well it is important for sustaining neuronal function. Therefore, we refer to CG8004 as the Drosophila Metaxin-2 (dMtx2).</p>","PeriodicalId":48925,"journal":{"name":"Genetics","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metaxin-2 tunes mitochondrial transportation and neuronal function in Drosophila.\",\"authors\":\"Ting Zhang, Ling Li, Xiaoyu Fan, Xinyi Shou, Yina Ruan, Xiaojun Xie\",\"doi\":\"10.1093/genetics/iyae204\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Metaxins are a family of evolutionarily conserved proteins that reside on the mitochondria outer membrane (MOM) and participate in the protein import into the mitochondria. Metaxin-2 (Mtx2), a member of this family, has been identified as a key component in the machinery for mitochondrial transport in both C. elegans and human neurons. To deepen our understanding of Mtx2's role in neurons, we examined the homologous genes CG5662 and CG8004 in Drosophila. The CG5662 is a non-essential gene while CG8004 null mutants die at late pupal stages. The CG8004 protein is widely expressed throughout the Drosophila nervous system and is targeted to mitochondria. However, neuronal CG8004 is dispensable for animal survival and is partially required for mitochondrial distribution in certain neuropil regions. Conditional knockout of CG8004 in adult gustatory receptor neurons (GRNs) impairs mitochondrial trafficking along GRN axons and diminishes the mitochondrial quantities in axon terminals. The absence of CG8004 also leads to mitochondrial fragmentation within GRN axons, a phenomenon that may be linked to mitochondrial transport through its genetic interaction with the fusion proteins Marf and Opa1. While the removal of neuronal CG8004 is not lethal during the developmental stage, it does have consequences for the lifespan and healthspan of adult Drosophila. At last, double knockout (KO) of CG5662 and CG8004 shows similar phenotypes as the CG8004 single KO, suggesting that CG5662 does not compensate for the loss of CG8004. In summary, our findings suggest that CG8004 plays a conserved and context-dependent role in axonal mitochondrial transport, as well it is important for sustaining neuronal function. Therefore, we refer to CG8004 as the Drosophila Metaxin-2 (dMtx2).</p>\",\"PeriodicalId\":48925,\"journal\":{\"name\":\"Genetics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/genetics/iyae204\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/genetics/iyae204","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

Metaxins 是一个进化上保守的蛋白质家族,它们驻留在线粒体外膜(MOM)上,参与蛋白质向线粒体的导入。Metaxin-2(Mtx2)是该家族的一个成员,已被确定为线粒体转运机制中的一个关键组成部分,在秀丽隐杆线粒体和人类神经元中都是如此。为了加深对 Mtx2 在神经元中作用的了解,我们研究了果蝇的同源基因 CG5662 和 CG8004。CG5662 是一个非必要基因,而 CG8004 空缺突变体在蛹后期死亡。CG8004 蛋白在整个果蝇神经系统中广泛表达,并以线粒体为靶标。然而,神经元 CG8004 对于动物的生存是不可或缺的,而且线粒体在某些神经瞳孔区域的分布也是部分必需的。在成年味觉受体神经元(GRNs)中有条件地敲除 CG8004 会影响线粒体沿 GRN 轴突的运输,并减少轴突末端的线粒体数量。缺少 CG8004 还会导致 GRN 轴突内的线粒体碎裂,这种现象可能与线粒体转运有关,因为它与融合蛋白 Marf 和 Opa1 存在基因相互作用。虽然神经元 CG8004 在发育阶段不会致死,但它确实会影响成年果蝇的寿命和健康。最后,CG5662和CG8004的双基因敲除(KO)显示出与CG8004单基因敲除相似的表型,表明CG5662不能补偿CG8004的缺失。总之,我们的研究结果表明,CG8004 在轴突线粒体转运中发挥着保守的、依赖于上下文的作用,它对维持神经元功能也很重要。因此,我们将 CG8004 称为果蝇 Metaxin-2(dMtx2)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Metaxin-2 tunes mitochondrial transportation and neuronal function in Drosophila.

Metaxins are a family of evolutionarily conserved proteins that reside on the mitochondria outer membrane (MOM) and participate in the protein import into the mitochondria. Metaxin-2 (Mtx2), a member of this family, has been identified as a key component in the machinery for mitochondrial transport in both C. elegans and human neurons. To deepen our understanding of Mtx2's role in neurons, we examined the homologous genes CG5662 and CG8004 in Drosophila. The CG5662 is a non-essential gene while CG8004 null mutants die at late pupal stages. The CG8004 protein is widely expressed throughout the Drosophila nervous system and is targeted to mitochondria. However, neuronal CG8004 is dispensable for animal survival and is partially required for mitochondrial distribution in certain neuropil regions. Conditional knockout of CG8004 in adult gustatory receptor neurons (GRNs) impairs mitochondrial trafficking along GRN axons and diminishes the mitochondrial quantities in axon terminals. The absence of CG8004 also leads to mitochondrial fragmentation within GRN axons, a phenomenon that may be linked to mitochondrial transport through its genetic interaction with the fusion proteins Marf and Opa1. While the removal of neuronal CG8004 is not lethal during the developmental stage, it does have consequences for the lifespan and healthspan of adult Drosophila. At last, double knockout (KO) of CG5662 and CG8004 shows similar phenotypes as the CG8004 single KO, suggesting that CG5662 does not compensate for the loss of CG8004. In summary, our findings suggest that CG8004 plays a conserved and context-dependent role in axonal mitochondrial transport, as well it is important for sustaining neuronal function. Therefore, we refer to CG8004 as the Drosophila Metaxin-2 (dMtx2).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Genetics
Genetics GENETICS & HEREDITY-
CiteScore
6.90
自引率
6.10%
发文量
177
审稿时长
1.5 months
期刊介绍: GENETICS is published by the Genetics Society of America, a scholarly society that seeks to deepen our understanding of the living world by advancing our understanding of genetics. Since 1916, GENETICS has published high-quality, original research presenting novel findings bearing on genetics and genomics. The journal publishes empirical studies of organisms ranging from microbes to humans, as well as theoretical work. While it has an illustrious history, GENETICS has changed along with the communities it serves: it is not your mentor''s journal. The editors make decisions quickly – in around 30 days – without sacrificing the excellence and scholarship for which the journal has long been known. GENETICS is a peer reviewed, peer-edited journal, with an international reach and increasing visibility and impact. All editorial decisions are made through collaboration of at least two editors who are practicing scientists. GENETICS is constantly innovating: expanded types of content include Reviews, Commentary (current issues of interest to geneticists), Perspectives (historical), Primers (to introduce primary literature into the classroom), Toolbox Reviews, plus YeastBook, FlyBook, and WormBook (coming spring 2016). For particularly time-sensitive results, we publish Communications. As part of our mission to serve our communities, we''ve published thematic collections, including Genomic Selection, Multiparental Populations, Mouse Collaborative Cross, and the Genetics of Sex.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信