将大麻植物化学物质作为抗 HCV 非核苷直接作用抑制剂的几何深度学习优先排序和验证。

IF 2.3 Q3 ENGINEERING, BIOMEDICAL
Biomedical Engineering and Computational Biology Pub Date : 2024-12-12 eCollection Date: 2024-01-01 DOI:10.1177/11795972241306881
Ssemuyiga Charles, Mulumba Pius Edgar
{"title":"将大麻植物化学物质作为抗 HCV 非核苷直接作用抑制剂的几何深度学习优先排序和验证。","authors":"Ssemuyiga Charles, Mulumba Pius Edgar","doi":"10.1177/11795972241306881","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>The rate of acute hepatitis C increased by 7% between 2020 and 2021, after the number of cases doubled between 2014 and 2020. With the current adoption of pan-genotypic HCV therapy, there is a need for improved availability and accessibility of this therapy. However, double and triple DAA-resistant variants have been identified in genotypes 1 and 5 with resistance-associated amino acid substitutions (RAASs) in NS3/4A, NS5A, and NS5B. The role of this research was to screen for novel potential NS5B inhibitors from the cannabis compound database (CBD) using Deep Learning.</p><p><strong>Methods: </strong>Virtual screening of the CBD compounds was performed using a trained Graph Neural Network (GNN) deep learning model. Re-docking and conventional docking were used to validate the results for these ligands since some had rotatable bonds >10. About 31 of the top 67 hits from virtual screening and docking were selected after ADMET screening. To verify their candidacy, 6 random hits were taken for FEP/MD and Molecular Simulation Dynamics to confirm their candidacy.</p><p><strong>Results: </strong>The top 200 compounds from the deep learning virtual screening were selected, and the virtual screening results were validated by re-docking and conventional docking. The ADMET profiles were optimal for 31 hits. Simulated complexes indicate that these hits are likely inhibitors with suitable binding affinities and FEP energies. Phytil Diphosphate and glucaric acid were suggested as possible ligands against NS5B.</p>","PeriodicalId":42484,"journal":{"name":"Biomedical Engineering and Computational Biology","volume":"15 ","pages":"11795972241306881"},"PeriodicalIF":2.3000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11638990/pdf/","citationCount":"0","resultStr":"{\"title\":\"Geometric Deep learning Prioritization and Validation of Cannabis Phytochemicals as Anti-HCV Non-nucleoside Direct-acting Inhibitors.\",\"authors\":\"Ssemuyiga Charles, Mulumba Pius Edgar\",\"doi\":\"10.1177/11795972241306881\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>The rate of acute hepatitis C increased by 7% between 2020 and 2021, after the number of cases doubled between 2014 and 2020. With the current adoption of pan-genotypic HCV therapy, there is a need for improved availability and accessibility of this therapy. However, double and triple DAA-resistant variants have been identified in genotypes 1 and 5 with resistance-associated amino acid substitutions (RAASs) in NS3/4A, NS5A, and NS5B. The role of this research was to screen for novel potential NS5B inhibitors from the cannabis compound database (CBD) using Deep Learning.</p><p><strong>Methods: </strong>Virtual screening of the CBD compounds was performed using a trained Graph Neural Network (GNN) deep learning model. Re-docking and conventional docking were used to validate the results for these ligands since some had rotatable bonds >10. About 31 of the top 67 hits from virtual screening and docking were selected after ADMET screening. To verify their candidacy, 6 random hits were taken for FEP/MD and Molecular Simulation Dynamics to confirm their candidacy.</p><p><strong>Results: </strong>The top 200 compounds from the deep learning virtual screening were selected, and the virtual screening results were validated by re-docking and conventional docking. The ADMET profiles were optimal for 31 hits. Simulated complexes indicate that these hits are likely inhibitors with suitable binding affinities and FEP energies. Phytil Diphosphate and glucaric acid were suggested as possible ligands against NS5B.</p>\",\"PeriodicalId\":42484,\"journal\":{\"name\":\"Biomedical Engineering and Computational Biology\",\"volume\":\"15 \",\"pages\":\"11795972241306881\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11638990/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Engineering and Computational Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/11795972241306881\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Engineering and Computational Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/11795972241306881","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Geometric Deep learning Prioritization and Validation of Cannabis Phytochemicals as Anti-HCV Non-nucleoside Direct-acting Inhibitors.

Introduction: The rate of acute hepatitis C increased by 7% between 2020 and 2021, after the number of cases doubled between 2014 and 2020. With the current adoption of pan-genotypic HCV therapy, there is a need for improved availability and accessibility of this therapy. However, double and triple DAA-resistant variants have been identified in genotypes 1 and 5 with resistance-associated amino acid substitutions (RAASs) in NS3/4A, NS5A, and NS5B. The role of this research was to screen for novel potential NS5B inhibitors from the cannabis compound database (CBD) using Deep Learning.

Methods: Virtual screening of the CBD compounds was performed using a trained Graph Neural Network (GNN) deep learning model. Re-docking and conventional docking were used to validate the results for these ligands since some had rotatable bonds >10. About 31 of the top 67 hits from virtual screening and docking were selected after ADMET screening. To verify their candidacy, 6 random hits were taken for FEP/MD and Molecular Simulation Dynamics to confirm their candidacy.

Results: The top 200 compounds from the deep learning virtual screening were selected, and the virtual screening results were validated by re-docking and conventional docking. The ADMET profiles were optimal for 31 hits. Simulated complexes indicate that these hits are likely inhibitors with suitable binding affinities and FEP energies. Phytil Diphosphate and glucaric acid were suggested as possible ligands against NS5B.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
1
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信