Liron Pantanowitz, Thomas Pearce, Ibrahim Abukhiran, Matthew Hanna, Sarah Wheeler, T Rinda Soong, Ahmad P Tafti, Joshua Pantanowitz, Ming Y Lu, Faisal Mahmood, Qiangqiang Gu, Hooman H Rashidi
{"title":"医学中的非生成人工智能(AI):有监督和无监督机器学习的进展与应用》。","authors":"Liron Pantanowitz, Thomas Pearce, Ibrahim Abukhiran, Matthew Hanna, Sarah Wheeler, T Rinda Soong, Ahmad P Tafti, Joshua Pantanowitz, Ming Y Lu, Faisal Mahmood, Qiangqiang Gu, Hooman H Rashidi","doi":"10.1016/j.modpat.2024.100680","DOIUrl":null,"url":null,"abstract":"<p><p>The use of artificial intelligence (AI) within pathology and health care has advanced extensively. We have accordingly witnessed an increased adoption of various AI tools that are transforming our approach to clinical decision support, personalized medicine, predictive analytics, automation, and discovery. The familiar and more reliable AI tools that have been incorporated within health care thus far fall mostly under the nongenerative AI domain, which includes supervised and unsupervised machine learning (ML) techniques. This review article explores how such nongenerative AI methods, rooted in traditional rules-based systems, enhance diagnostic accuracy, efficiency, and consistency within medicine. Key concepts and the application of supervised learning models (ie, classification and regression) such as decision trees, support vector machines, linear and logistic regression, K-nearest neighbor, and neural networks are explained along with the newer landscape of neural network-based nongenerative foundation models. Unsupervised learning techniques, including clustering, dimensionality reduction, and anomaly detection, are also discussed for their roles in uncovering novel disease subtypes or identifying outliers. Technical details related to the application of nongenerative AI algorithms for analyzing whole slide images are also highlighted. The performance, explainability, and reliability of nongenerative AI models essential for clinical decision-making is also reviewed, as well as challenges related to data quality, model interpretability, and risk of data drift. An understanding of which AI-ML models to employ and which shortcomings need to be addressed is imperative to safely and efficiently leverage, integrate, and monitor these traditional AI tools in clinical practice and research.</p>","PeriodicalId":18706,"journal":{"name":"Modern Pathology","volume":" ","pages":"100680"},"PeriodicalIF":7.1000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nongenerative Artificial Intelligence in Medicine: Advancements and Applications in Supervised and Unsupervised Machine Learning.\",\"authors\":\"Liron Pantanowitz, Thomas Pearce, Ibrahim Abukhiran, Matthew Hanna, Sarah Wheeler, T Rinda Soong, Ahmad P Tafti, Joshua Pantanowitz, Ming Y Lu, Faisal Mahmood, Qiangqiang Gu, Hooman H Rashidi\",\"doi\":\"10.1016/j.modpat.2024.100680\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The use of artificial intelligence (AI) within pathology and health care has advanced extensively. We have accordingly witnessed an increased adoption of various AI tools that are transforming our approach to clinical decision support, personalized medicine, predictive analytics, automation, and discovery. The familiar and more reliable AI tools that have been incorporated within health care thus far fall mostly under the nongenerative AI domain, which includes supervised and unsupervised machine learning (ML) techniques. This review article explores how such nongenerative AI methods, rooted in traditional rules-based systems, enhance diagnostic accuracy, efficiency, and consistency within medicine. Key concepts and the application of supervised learning models (ie, classification and regression) such as decision trees, support vector machines, linear and logistic regression, K-nearest neighbor, and neural networks are explained along with the newer landscape of neural network-based nongenerative foundation models. Unsupervised learning techniques, including clustering, dimensionality reduction, and anomaly detection, are also discussed for their roles in uncovering novel disease subtypes or identifying outliers. Technical details related to the application of nongenerative AI algorithms for analyzing whole slide images are also highlighted. The performance, explainability, and reliability of nongenerative AI models essential for clinical decision-making is also reviewed, as well as challenges related to data quality, model interpretability, and risk of data drift. An understanding of which AI-ML models to employ and which shortcomings need to be addressed is imperative to safely and efficiently leverage, integrate, and monitor these traditional AI tools in clinical practice and research.</p>\",\"PeriodicalId\":18706,\"journal\":{\"name\":\"Modern Pathology\",\"volume\":\" \",\"pages\":\"100680\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Modern Pathology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.modpat.2024.100680\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PATHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modern Pathology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.modpat.2024.100680","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PATHOLOGY","Score":null,"Total":0}
Nongenerative Artificial Intelligence in Medicine: Advancements and Applications in Supervised and Unsupervised Machine Learning.
The use of artificial intelligence (AI) within pathology and health care has advanced extensively. We have accordingly witnessed an increased adoption of various AI tools that are transforming our approach to clinical decision support, personalized medicine, predictive analytics, automation, and discovery. The familiar and more reliable AI tools that have been incorporated within health care thus far fall mostly under the nongenerative AI domain, which includes supervised and unsupervised machine learning (ML) techniques. This review article explores how such nongenerative AI methods, rooted in traditional rules-based systems, enhance diagnostic accuracy, efficiency, and consistency within medicine. Key concepts and the application of supervised learning models (ie, classification and regression) such as decision trees, support vector machines, linear and logistic regression, K-nearest neighbor, and neural networks are explained along with the newer landscape of neural network-based nongenerative foundation models. Unsupervised learning techniques, including clustering, dimensionality reduction, and anomaly detection, are also discussed for their roles in uncovering novel disease subtypes or identifying outliers. Technical details related to the application of nongenerative AI algorithms for analyzing whole slide images are also highlighted. The performance, explainability, and reliability of nongenerative AI models essential for clinical decision-making is also reviewed, as well as challenges related to data quality, model interpretability, and risk of data drift. An understanding of which AI-ML models to employ and which shortcomings need to be addressed is imperative to safely and efficiently leverage, integrate, and monitor these traditional AI tools in clinical practice and research.
期刊介绍:
Modern Pathology, an international journal under the ownership of The United States & Canadian Academy of Pathology (USCAP), serves as an authoritative platform for publishing top-tier clinical and translational research studies in pathology.
Original manuscripts are the primary focus of Modern Pathology, complemented by impactful editorials, reviews, and practice guidelines covering all facets of precision diagnostics in human pathology. The journal's scope includes advancements in molecular diagnostics and genomic classifications of diseases, breakthroughs in immune-oncology, computational science, applied bioinformatics, and digital pathology.