克服研究镍锌核苷酸辅因子相关酶的障碍。

IF 5.1 1区 生物学 Q1 MICROBIOLOGY
mBio Pub Date : 2024-12-16 DOI:10.1128/mbio.03404-24
Jorge L Nevarez, Aiko Turmo, Santhosh Gatreddi, Swati Gupta, Jian Hu, Robert P Hausinger
{"title":"克服研究镍锌核苷酸辅因子相关酶的障碍。","authors":"Jorge L Nevarez, Aiko Turmo, Santhosh Gatreddi, Swati Gupta, Jian Hu, Robert P Hausinger","doi":"10.1128/mbio.03404-24","DOIUrl":null,"url":null,"abstract":"<p><p>The nickel-pincer nucleotide (NPN) cofactor is a modified pyridinium mononucleotide that tri-coordinates nickel and is crucial for the activity of certain racemases and epimerases. LarB, LarC, and LarE are responsible for NPN synthesis, with the cofactor subsequently installed into LarA homologs. Hurdles for investigating the functional properties of such proteins arise from the difficulty of obtaining the active, NPN cofactor-loaded enzymes and in assaying their diverse reactivities. Here, we show that when the <i>Lactiplantibacillus plantarum lar</i> genes are cloned into the Duet expression system and cultured in <i>Escherichia coli</i>, they confer lactate racemase activity to the cells. By replacing <i>L. plantarum larA</i> with related genes from other microorganisms, this system allows for the generation of active LarA homologs. Furthermore, the Duet system enables the functional testing of LarB, LarC, and LarE homologs from other microorganisms. In addition to applying the Duet expression system for synthesis of active, NPN cofactor-containing enzymes in <i>E. coli</i>, we demonstrate that circular dichroism spectroscopy provides a broadly applicable means of assaying these enzymes. By selecting a wavelength of high molar ellipticity and low absorbance for a given 2-hydroxy acid substrate enantiomer, the conversion of one enantiomer/epimer into the other can be monitored for LarA homologs without the need for any coupling enzymes or reagents. The methods discussed here further our abilities to investigate the unique activities of Lar proteins.</p><p><strong>Importance: </strong>Enzymes containing the nickel-pincer nucleotide (NPN) cofactor are prevalent in a wide range of microorganisms and catalyze various critical biochemical reactions, yet they remain underexplored due, in part, to limitations in current research methodologies. The two significant advancements described here, the heterologous production of active NPN-cofactor containing enzymes in <i>Escherichia coli</i> and the use of a circular dichroism-based assay to monitor enzyme activities, expand our capacity to analyze these enzymes. Such additional detailed characterization will deepen our understanding of the diverse chemistry catalyzed by the NPN cofactor and potentially uncover novel roles for this organometallic species in microbial metabolism.</p>","PeriodicalId":18315,"journal":{"name":"mBio","volume":" ","pages":"e0340424"},"PeriodicalIF":5.1000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Overcoming barriers for investigating nickel-pincer nucleotide cofactor-related enzymes.\",\"authors\":\"Jorge L Nevarez, Aiko Turmo, Santhosh Gatreddi, Swati Gupta, Jian Hu, Robert P Hausinger\",\"doi\":\"10.1128/mbio.03404-24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The nickel-pincer nucleotide (NPN) cofactor is a modified pyridinium mononucleotide that tri-coordinates nickel and is crucial for the activity of certain racemases and epimerases. LarB, LarC, and LarE are responsible for NPN synthesis, with the cofactor subsequently installed into LarA homologs. Hurdles for investigating the functional properties of such proteins arise from the difficulty of obtaining the active, NPN cofactor-loaded enzymes and in assaying their diverse reactivities. Here, we show that when the <i>Lactiplantibacillus plantarum lar</i> genes are cloned into the Duet expression system and cultured in <i>Escherichia coli</i>, they confer lactate racemase activity to the cells. By replacing <i>L. plantarum larA</i> with related genes from other microorganisms, this system allows for the generation of active LarA homologs. Furthermore, the Duet system enables the functional testing of LarB, LarC, and LarE homologs from other microorganisms. In addition to applying the Duet expression system for synthesis of active, NPN cofactor-containing enzymes in <i>E. coli</i>, we demonstrate that circular dichroism spectroscopy provides a broadly applicable means of assaying these enzymes. By selecting a wavelength of high molar ellipticity and low absorbance for a given 2-hydroxy acid substrate enantiomer, the conversion of one enantiomer/epimer into the other can be monitored for LarA homologs without the need for any coupling enzymes or reagents. The methods discussed here further our abilities to investigate the unique activities of Lar proteins.</p><p><strong>Importance: </strong>Enzymes containing the nickel-pincer nucleotide (NPN) cofactor are prevalent in a wide range of microorganisms and catalyze various critical biochemical reactions, yet they remain underexplored due, in part, to limitations in current research methodologies. The two significant advancements described here, the heterologous production of active NPN-cofactor containing enzymes in <i>Escherichia coli</i> and the use of a circular dichroism-based assay to monitor enzyme activities, expand our capacity to analyze these enzymes. Such additional detailed characterization will deepen our understanding of the diverse chemistry catalyzed by the NPN cofactor and potentially uncover novel roles for this organometallic species in microbial metabolism.</p>\",\"PeriodicalId\":18315,\"journal\":{\"name\":\"mBio\",\"volume\":\" \",\"pages\":\"e0340424\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"mBio\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1128/mbio.03404-24\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"mBio","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/mbio.03404-24","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

镍-钳核苷酸(NPN)辅助因子是一种修饰的吡啶鎓单核苷酸,与镍三配位,对某些消旋酶和表聚酶的活性至关重要。LarB、LarC 和 LarE 负责合成 NPN,随后将该辅助因子装入 LarA 同源物中。研究这些蛋白质功能特性的障碍在于难以获得活性的、负载 NPN 辅因子的酶,以及难以检测它们的不同反应活性。在这里,我们发现当植物乳杆菌的 Lar 基因克隆到 Duet 表达系统并在大肠杆菌中培养时,它们会赋予细胞乳酸消旋酶活性。通过用来自其他微生物的相关基因替换植物杆状芽孢杆菌的 LarA 基因,该系统可以产生具有活性的 LarA 同源物。此外,Duet 系统还能对来自其他微生物的 LarB、LarC 和 LarE 同源物进行功能测试。除了应用 Duet 表达系统在大肠杆菌中合成活性的、含 NPN 辅因子的酶之外,我们还证明了圆二色性光谱法为检测这些酶提供了一种广泛适用的方法。通过为给定的 2- 羟基酸底物对映体选择一个摩尔椭圆度高、吸光度低的波长,可以监测 LarA 同源物的一种对映体/表聚体向另一种对映体/表聚体的转化,而不需要任何偶联酶或试剂。本文讨论的方法进一步提高了我们研究 Lar 蛋白独特活性的能力:含有镍锌核苷酸(NPN)辅助因子的酶普遍存在于各种微生物中,并催化各种关键的生化反应,但部分由于当前研究方法的局限性,这些酶仍未得到充分开发。本文介绍的两项重大进展,即在大肠杆菌中异源生产含有活性 NPN-cofactor的酶,以及使用基于圆二色性的测定法来监测酶的活性,扩大了我们分析这些酶的能力。这种额外的详细表征将加深我们对 NPN 辅助因子催化的各种化学反应的理解,并有可能发现这种有机金属物种在微生物代谢中的新作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Overcoming barriers for investigating nickel-pincer nucleotide cofactor-related enzymes.

The nickel-pincer nucleotide (NPN) cofactor is a modified pyridinium mononucleotide that tri-coordinates nickel and is crucial for the activity of certain racemases and epimerases. LarB, LarC, and LarE are responsible for NPN synthesis, with the cofactor subsequently installed into LarA homologs. Hurdles for investigating the functional properties of such proteins arise from the difficulty of obtaining the active, NPN cofactor-loaded enzymes and in assaying their diverse reactivities. Here, we show that when the Lactiplantibacillus plantarum lar genes are cloned into the Duet expression system and cultured in Escherichia coli, they confer lactate racemase activity to the cells. By replacing L. plantarum larA with related genes from other microorganisms, this system allows for the generation of active LarA homologs. Furthermore, the Duet system enables the functional testing of LarB, LarC, and LarE homologs from other microorganisms. In addition to applying the Duet expression system for synthesis of active, NPN cofactor-containing enzymes in E. coli, we demonstrate that circular dichroism spectroscopy provides a broadly applicable means of assaying these enzymes. By selecting a wavelength of high molar ellipticity and low absorbance for a given 2-hydroxy acid substrate enantiomer, the conversion of one enantiomer/epimer into the other can be monitored for LarA homologs without the need for any coupling enzymes or reagents. The methods discussed here further our abilities to investigate the unique activities of Lar proteins.

Importance: Enzymes containing the nickel-pincer nucleotide (NPN) cofactor are prevalent in a wide range of microorganisms and catalyze various critical biochemical reactions, yet they remain underexplored due, in part, to limitations in current research methodologies. The two significant advancements described here, the heterologous production of active NPN-cofactor containing enzymes in Escherichia coli and the use of a circular dichroism-based assay to monitor enzyme activities, expand our capacity to analyze these enzymes. Such additional detailed characterization will deepen our understanding of the diverse chemistry catalyzed by the NPN cofactor and potentially uncover novel roles for this organometallic species in microbial metabolism.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
mBio
mBio MICROBIOLOGY-
CiteScore
10.50
自引率
3.10%
发文量
762
审稿时长
1 months
期刊介绍: mBio® is ASM''s first broad-scope, online-only, open access journal. mBio offers streamlined review and publication of the best research in microbiology and allied fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信