A. Rajšić, B. C. Johnson, G. S. Collins, H. C. F. C. Hay
{"title":"Using the Melosh Model of Acoustic Fluidization to Simulate Impact Crater Collapse on the Earth and Moon","authors":"A. Rajšić, B. C. Johnson, G. S. Collins, H. C. F. C. Hay","doi":"10.1029/2024JE008562","DOIUrl":null,"url":null,"abstract":"<p>The formation of complex craters requires some form of transient weakening of target rocks. Acoustic fluidization is one proposed mechanism applied in many numerical simulations of large crater formation. In a companion paper, we describe implementing the Melosh model of acoustic fluidization in the iSALE shock physics code. Here, we explore the effect of Melosh model parameters on crater collapse and determine the range of parameters that reproduce observed crater depth-to-diameter trends on the Earth and Moon. Target viscosity in the Melosh model is proportional to the vibrational wavelength, <span></span><math>\n <semantics>\n <mrow>\n <mi>λ</mi>\n </mrow>\n <annotation> $\\lambda $</annotation>\n </semantics></math>, and the longevity of acoustic vibrations is <span></span><math>\n <semantics>\n <mrow>\n <mo>∝</mo>\n <mi>λ</mi>\n <mi>Q</mi>\n </mrow>\n <annotation> $\\propto \\lambda Q$</annotation>\n </semantics></math> (<span></span><math>\n <semantics>\n <mrow>\n <mi>Q</mi>\n </mrow>\n <annotation> $Q$</annotation>\n </semantics></math>—quality factor). Our simulations show that <span></span><math>\n <semantics>\n <mrow>\n <mi>λ</mi>\n </mrow>\n <annotation> $\\lambda $</annotation>\n </semantics></math> affects the size of the fluidized region, its fluidity, and the magnitude of the vibrations, producing a variety of crater collapse styles. The size of the fluidized region is strongly affected by the <span></span><math>\n <semantics>\n <mrow>\n <mi>Q</mi>\n </mrow>\n <annotation> $Q$</annotation>\n </semantics></math>. The regeneration factor, <span></span><math>\n <semantics>\n <mrow>\n <mi>e</mi>\n </mrow>\n <annotation> $e$</annotation>\n </semantics></math>, controls the amount of (re)generated acoustic energy and its localization. We find that a decrease in <span></span><math>\n <semantics>\n <mrow>\n <mi>e</mi>\n </mrow>\n <annotation> $e$</annotation>\n </semantics></math> leads to less crater collapse and that there are trade-offs between <span></span><math>\n <semantics>\n <mrow>\n <mi>e</mi>\n </mrow>\n <annotation> $e$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>Q</mi>\n </mrow>\n <annotation> $Q$</annotation>\n </semantics></math>. This trade-off contributes to the more realistic <span></span><math>\n <semantics>\n <mrow>\n <mi>Q</mi>\n </mrow>\n <annotation> $Q$</annotation>\n </semantics></math> values than those used in the Block model. The diffusion of vibrations in regions with high stress and strain is controlled by the scattering term, <span></span><math>\n <semantics>\n <mrow>\n <mi>ξ</mi>\n </mrow>\n <annotation> $\\xi $</annotation>\n </semantics></math>. Compared to the Block model, the Melosh model results in a shallower zone of weakening in complex craters and enhanced strain localization around the crater rim. The parameter set that produces best depth-diameter trends is <span></span><math>\n <semantics>\n <mrow>\n <mi>λ</mi>\n </mrow>\n <annotation> $\\lambda $</annotation>\n </semantics></math> = 0.2<span></span><math>\n <semantics>\n <mrow>\n <mo>×</mo>\n </mrow>\n <annotation> ${\\times} $</annotation>\n </semantics></math>impactor radius, <span></span><math>\n <semantics>\n <mrow>\n <mi>Q</mi>\n </mrow>\n <annotation> $Q$</annotation>\n </semantics></math> = 10–50, <span></span><math>\n <semantics>\n <mrow>\n <mi>e</mi>\n </mrow>\n <annotation> $e$</annotation>\n </semantics></math> = 0.025–0.1, and <span></span><math>\n <semantics>\n <mrow>\n <mi>ξ</mi>\n </mrow>\n <annotation> $\\xi $</annotation>\n </semantics></math> = 10–<span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mn>10</mn>\n <mn>5</mn>\n </msup>\n </mrow>\n <annotation> ${10}^{5}$</annotation>\n </semantics></math> <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>m</mi>\n <mn>2</mn>\n </msup>\n <msup>\n <mi>s</mi>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation> ${\\mathrm{m}}^{2}{\\mathrm{s}}^{-1}$</annotation>\n </semantics></math>.</p>","PeriodicalId":16101,"journal":{"name":"Journal of Geophysical Research: Planets","volume":"129 12","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11645987/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Planets","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JE008562","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
摘要
复杂陨石坑的形成需要对目标岩石进行某种形式的瞬时削弱。声流化是许多大型陨石坑形成数值模拟中应用的一种拟议机制。在另一篇论文中,我们介绍了在 iSALE 冲击物理代码中实施梅洛什声流化模型的情况。在这里,我们探讨了梅洛什模型参数对陨石坑坍塌的影响,并确定了能够再现地球和月球上观测到的陨石坑深度-直径趋势的参数范围。梅洛什模型中的目标粘度与振动波长λ成正比,声振动的寿命为∝ λ Q(Q - 质量因子)。我们的模拟结果表明,λ 会影响流化区的大小、流动性和振动幅度,从而产生各种陨石坑崩塌方式。流化区的大小受 Q 的影响很大。再生因子 e 控制着(重新)产生的声能及其定位。我们发现,减少 e 会导致更少的陨石坑坍塌,并且 e 和 Q 之间存在权衡。这种权衡使得 Q 值比 Block 模型中使用的 Q 值更符合实际情况。振动在高应力和高应变区域的扩散由散射项 ξ 控制。与布洛克模型相比,梅洛什模型使复杂陨石坑中的削弱区变浅,并增强了陨石坑边缘周围的应变局部化。产生最佳深度-直径趋势的参数集是 λ = 0.2 × 撞击器半径,Q = 10-50,e = 0.025-0.1,ξ = 10- 10 5 m 2 s - 1。
Using the Melosh Model of Acoustic Fluidization to Simulate Impact Crater Collapse on the Earth and Moon
The formation of complex craters requires some form of transient weakening of target rocks. Acoustic fluidization is one proposed mechanism applied in many numerical simulations of large crater formation. In a companion paper, we describe implementing the Melosh model of acoustic fluidization in the iSALE shock physics code. Here, we explore the effect of Melosh model parameters on crater collapse and determine the range of parameters that reproduce observed crater depth-to-diameter trends on the Earth and Moon. Target viscosity in the Melosh model is proportional to the vibrational wavelength, , and the longevity of acoustic vibrations is (—quality factor). Our simulations show that affects the size of the fluidized region, its fluidity, and the magnitude of the vibrations, producing a variety of crater collapse styles. The size of the fluidized region is strongly affected by the . The regeneration factor, , controls the amount of (re)generated acoustic energy and its localization. We find that a decrease in leads to less crater collapse and that there are trade-offs between and . This trade-off contributes to the more realistic values than those used in the Block model. The diffusion of vibrations in regions with high stress and strain is controlled by the scattering term, . Compared to the Block model, the Melosh model results in a shallower zone of weakening in complex craters and enhanced strain localization around the crater rim. The parameter set that produces best depth-diameter trends is = 0.2impactor radius, = 10–50, = 0.025–0.1, and = 10– .
期刊介绍:
The Journal of Geophysical Research Planets is dedicated to the publication of new and original research in the broad field of planetary science. Manuscripts concerning planetary geology, geophysics, geochemistry, atmospheres, and dynamics are appropriate for the journal when they increase knowledge about the processes that affect Solar System objects. Manuscripts concerning other planetary systems, exoplanets or Earth are welcome when presented in a comparative planetology perspective. Studies in the field of astrobiology will be considered when they have immediate consequences for the interpretation of planetary data. JGR: Planets does not publish manuscripts that deal with future missions and instrumentation, nor those that are primarily of an engineering interest. Instrument, calibration or data processing papers may be appropriate for the journal, but only when accompanied by scientific analysis and interpretation that increases understanding of the studied object. A manuscript that describes a new method or technique would be acceptable for JGR: Planets if it contained new and relevant scientific results obtained using the method. Review articles are generally not appropriate for JGR: Planets, but they may be considered if they form an integral part of a special issue.