{"title":"结合大量和单细胞转录组分析揭示肠道炎症对多发性硬化症的潜在影响","authors":"Zhu Xu, Junyu Zhu, Zhuo Ma, Dan Zhen, Zindan Gao","doi":"10.1007/s10753-024-02195-z","DOIUrl":null,"url":null,"abstract":"<p><p>Multiple sclerosis (MS) and inflammatory bowel disease (IBD) are both autoimmune disorders caused by dysregulated immune responses. Still, there is a growing awareness of the comorbidity between MS and IBD. However, the shared pathophysiological mechanisms between these two diseases are still lacking. RNA sequencing datasets (GSE126124, GSE9686, GSE36807, GSE21942) were analyzed to identify the shared differential expressed genes (DEGs) for IBD and experimental allergic encephalomyelitis (EAE). Other datasets (GSE17048, GSE75214, and GSE16879) were downloaded for further verification and analysis. Shared pathways and regulatory networks were explored based on these DEGs. The single-cell transcriptome of central nervous system (CNS) immune cells sequenced from EAE brains and the public datasets of IBD (PRJCA003980) were analyzed for the immune characteristics of the shared DEGs. Mass cytometry by time-of-flight (CyTOF) of peripheral blood mononuclear cells (PBMCs) was performed for the systematic immune response in the EAE model. Machine learning algorithms were also used to identify the diagnostic biomarkers of MS. We identified 74 common DEGs from the selected RNA sequencing datasets, and single-cell RNA data of the intestinal tissues of IBD patients showed that 56 of 74 DEGs were highly enriched in IL1B<sup>+</sup> macrophages. These 56 DEGs, defined as inflammation-related DEGs (IRGs), were also highly expressed in pro-inflammatory macrophages of EAE mice and MS patients. The abundance of systematic CD14<sup>+</sup> monocytes was validated by CyTOF data. These IRGs were highly enriched in immune response, NOD-like receptor signaling pathway, IL-18 signaling pathway, and other related pathways. In addition, 'AddModuleScore_UCell' analysis further validated that these IRGs (such as IL1B, S100A8, and other inflammatory factors) are highly expressed mainly in pro-inflammatory macrophages, which play an essential role in pro-inflammatory activation in IBD and multiple sclerosis, such as IL-17 signaling pathway, NF-kappa B signaling pathway, and TNF signaling pathway. Finally, suppressors of cytokine signaling 3(SOCS3) and formyl peptide receptor 2(FPR2) were identified as potential biomarkers by machine learning. Two genes were highly expressed in pro-inflammatory macrophages of IBD and MS disease compared to control, and other datasets and experiments further revealed that SOCS3 and FPR2 were highly expressed in IBD and EAE samples. These shared IRGs, which encode inflammatory cytokines, exhibit high expression levels in inflammatory macrophages in IBD and may play a significant role in the inflammatory cytokine storm in MS patients. Two potential biomarkers, SOCS3 and FPR2, were screened out with great diagnostic value for MS and IBD.</p>","PeriodicalId":13524,"journal":{"name":"Inflammation","volume":" ","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combined Bulk and Single-Cell Transcriptomic Analysis to Reveal the Potential Influences of Intestinal Inflammatory Disease on Multiple Sclerosis.\",\"authors\":\"Zhu Xu, Junyu Zhu, Zhuo Ma, Dan Zhen, Zindan Gao\",\"doi\":\"10.1007/s10753-024-02195-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Multiple sclerosis (MS) and inflammatory bowel disease (IBD) are both autoimmune disorders caused by dysregulated immune responses. Still, there is a growing awareness of the comorbidity between MS and IBD. However, the shared pathophysiological mechanisms between these two diseases are still lacking. RNA sequencing datasets (GSE126124, GSE9686, GSE36807, GSE21942) were analyzed to identify the shared differential expressed genes (DEGs) for IBD and experimental allergic encephalomyelitis (EAE). Other datasets (GSE17048, GSE75214, and GSE16879) were downloaded for further verification and analysis. Shared pathways and regulatory networks were explored based on these DEGs. The single-cell transcriptome of central nervous system (CNS) immune cells sequenced from EAE brains and the public datasets of IBD (PRJCA003980) were analyzed for the immune characteristics of the shared DEGs. Mass cytometry by time-of-flight (CyTOF) of peripheral blood mononuclear cells (PBMCs) was performed for the systematic immune response in the EAE model. Machine learning algorithms were also used to identify the diagnostic biomarkers of MS. We identified 74 common DEGs from the selected RNA sequencing datasets, and single-cell RNA data of the intestinal tissues of IBD patients showed that 56 of 74 DEGs were highly enriched in IL1B<sup>+</sup> macrophages. These 56 DEGs, defined as inflammation-related DEGs (IRGs), were also highly expressed in pro-inflammatory macrophages of EAE mice and MS patients. The abundance of systematic CD14<sup>+</sup> monocytes was validated by CyTOF data. These IRGs were highly enriched in immune response, NOD-like receptor signaling pathway, IL-18 signaling pathway, and other related pathways. In addition, 'AddModuleScore_UCell' analysis further validated that these IRGs (such as IL1B, S100A8, and other inflammatory factors) are highly expressed mainly in pro-inflammatory macrophages, which play an essential role in pro-inflammatory activation in IBD and multiple sclerosis, such as IL-17 signaling pathway, NF-kappa B signaling pathway, and TNF signaling pathway. Finally, suppressors of cytokine signaling 3(SOCS3) and formyl peptide receptor 2(FPR2) were identified as potential biomarkers by machine learning. Two genes were highly expressed in pro-inflammatory macrophages of IBD and MS disease compared to control, and other datasets and experiments further revealed that SOCS3 and FPR2 were highly expressed in IBD and EAE samples. These shared IRGs, which encode inflammatory cytokines, exhibit high expression levels in inflammatory macrophages in IBD and may play a significant role in the inflammatory cytokine storm in MS patients. Two potential biomarkers, SOCS3 and FPR2, were screened out with great diagnostic value for MS and IBD.</p>\",\"PeriodicalId\":13524,\"journal\":{\"name\":\"Inflammation\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inflammation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10753-024-02195-z\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inflammation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10753-024-02195-z","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Combined Bulk and Single-Cell Transcriptomic Analysis to Reveal the Potential Influences of Intestinal Inflammatory Disease on Multiple Sclerosis.
Multiple sclerosis (MS) and inflammatory bowel disease (IBD) are both autoimmune disorders caused by dysregulated immune responses. Still, there is a growing awareness of the comorbidity between MS and IBD. However, the shared pathophysiological mechanisms between these two diseases are still lacking. RNA sequencing datasets (GSE126124, GSE9686, GSE36807, GSE21942) were analyzed to identify the shared differential expressed genes (DEGs) for IBD and experimental allergic encephalomyelitis (EAE). Other datasets (GSE17048, GSE75214, and GSE16879) were downloaded for further verification and analysis. Shared pathways and regulatory networks were explored based on these DEGs. The single-cell transcriptome of central nervous system (CNS) immune cells sequenced from EAE brains and the public datasets of IBD (PRJCA003980) were analyzed for the immune characteristics of the shared DEGs. Mass cytometry by time-of-flight (CyTOF) of peripheral blood mononuclear cells (PBMCs) was performed for the systematic immune response in the EAE model. Machine learning algorithms were also used to identify the diagnostic biomarkers of MS. We identified 74 common DEGs from the selected RNA sequencing datasets, and single-cell RNA data of the intestinal tissues of IBD patients showed that 56 of 74 DEGs were highly enriched in IL1B+ macrophages. These 56 DEGs, defined as inflammation-related DEGs (IRGs), were also highly expressed in pro-inflammatory macrophages of EAE mice and MS patients. The abundance of systematic CD14+ monocytes was validated by CyTOF data. These IRGs were highly enriched in immune response, NOD-like receptor signaling pathway, IL-18 signaling pathway, and other related pathways. In addition, 'AddModuleScore_UCell' analysis further validated that these IRGs (such as IL1B, S100A8, and other inflammatory factors) are highly expressed mainly in pro-inflammatory macrophages, which play an essential role in pro-inflammatory activation in IBD and multiple sclerosis, such as IL-17 signaling pathway, NF-kappa B signaling pathway, and TNF signaling pathway. Finally, suppressors of cytokine signaling 3(SOCS3) and formyl peptide receptor 2(FPR2) were identified as potential biomarkers by machine learning. Two genes were highly expressed in pro-inflammatory macrophages of IBD and MS disease compared to control, and other datasets and experiments further revealed that SOCS3 and FPR2 were highly expressed in IBD and EAE samples. These shared IRGs, which encode inflammatory cytokines, exhibit high expression levels in inflammatory macrophages in IBD and may play a significant role in the inflammatory cytokine storm in MS patients. Two potential biomarkers, SOCS3 and FPR2, were screened out with great diagnostic value for MS and IBD.
期刊介绍:
Inflammation publishes the latest international advances in experimental and clinical research on the physiology, biochemistry, cell biology, and pharmacology of inflammation. Contributions include full-length scientific reports, short definitive articles, and papers from meetings and symposia proceedings. The journal''s coverage includes acute and chronic inflammation; mediators of inflammation; mechanisms of tissue injury and cytotoxicity; pharmacology of inflammation; and clinical studies of inflammation and its modification.