M Akram, D Hauser, A Dietl, M Steigleder, G M Ullmann, T R M Barends
{"title":"钙离子在厌氧生物新型 c 型细胞色素中的氧化还原电位调节作用","authors":"M Akram, D Hauser, A Dietl, M Steigleder, G M Ullmann, T R M Barends","doi":"10.1016/j.jbc.2024.108082","DOIUrl":null,"url":null,"abstract":"<p><p>The electrochemical potentials of redox-active proteins need to be tuned accurately to the correct values for proper biological function. Here we describe a diheme cytochrome c with high heme redox potentials of about +350 mV, despite having a large overall negative charge which typically reduces redox potentials. High resolution crystal structures, spectroelectrochemical measurements and high-end computational methods show how this is achieved: each heme iron has a calcium cation positioned next to it at a distance of only 6.9 Å, raising their redox potentials by several hundred mV through electrostatic interaction. We suggest that this has evolved to provide the protein with a high redox potential despite its large negative surface charge, which it likely requires for interactions with redox partners.</p>","PeriodicalId":15140,"journal":{"name":"Journal of Biological Chemistry","volume":" ","pages":"108082"},"PeriodicalIF":4.0000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Redox potential tuning by calcium ions in a novel c-type cytochrome from an anammox organism.\",\"authors\":\"M Akram, D Hauser, A Dietl, M Steigleder, G M Ullmann, T R M Barends\",\"doi\":\"10.1016/j.jbc.2024.108082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The electrochemical potentials of redox-active proteins need to be tuned accurately to the correct values for proper biological function. Here we describe a diheme cytochrome c with high heme redox potentials of about +350 mV, despite having a large overall negative charge which typically reduces redox potentials. High resolution crystal structures, spectroelectrochemical measurements and high-end computational methods show how this is achieved: each heme iron has a calcium cation positioned next to it at a distance of only 6.9 Å, raising their redox potentials by several hundred mV through electrostatic interaction. We suggest that this has evolved to provide the protein with a high redox potential despite its large negative surface charge, which it likely requires for interactions with redox partners.</p>\",\"PeriodicalId\":15140,\"journal\":{\"name\":\"Journal of Biological Chemistry\",\"volume\":\" \",\"pages\":\"108082\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biological Chemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jbc.2024.108082\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Chemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jbc.2024.108082","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
氧化还原活性蛋白质的电化学电位需要精确调整到正确的值,才能发挥正常的生物功能。在这里,我们描述了一种二heme细胞色素 c,尽管它带有通常会降低氧化还原电位的大量整体负电荷,但其血红素氧化还原电位却高达约 +350 mV。高分辨率晶体结构、光谱电化学测量和高端计算方法显示了这是如何实现的:每个血红素铁旁边都有一个距离仅为 6.9 Å 的钙阳离子,通过静电作用将它们的氧化还原电位提高了几百 mV。我们认为,尽管蛋白质的表面电荷为负,但这一进化过程仍为蛋白质提供了高氧化还原电位,而这可能是蛋白质与氧化还原伙伴相互作用所必需的。
Redox potential tuning by calcium ions in a novel c-type cytochrome from an anammox organism.
The electrochemical potentials of redox-active proteins need to be tuned accurately to the correct values for proper biological function. Here we describe a diheme cytochrome c with high heme redox potentials of about +350 mV, despite having a large overall negative charge which typically reduces redox potentials. High resolution crystal structures, spectroelectrochemical measurements and high-end computational methods show how this is achieved: each heme iron has a calcium cation positioned next to it at a distance of only 6.9 Å, raising their redox potentials by several hundred mV through electrostatic interaction. We suggest that this has evolved to provide the protein with a high redox potential despite its large negative surface charge, which it likely requires for interactions with redox partners.
期刊介绍:
The Journal of Biological Chemistry welcomes high-quality science that seeks to elucidate the molecular and cellular basis of biological processes. Papers published in JBC can therefore fall under the umbrellas of not only biological chemistry, chemical biology, or biochemistry, but also allied disciplines such as biophysics, systems biology, RNA biology, immunology, microbiology, neurobiology, epigenetics, computational biology, ’omics, and many more. The outcome of our focus on papers that contribute novel and important mechanistic insights, rather than on a particular topic area, is that JBC is truly a melting pot for scientists across disciplines. In addition, JBC welcomes papers that describe methods that will help scientists push their biochemical inquiries forward and resources that will be of use to the research community.