对患者特异性主动脉根部全经导管主动脉瓣装置的交互动力学进行计算评估。

IF 7 2区 医学 Q1 BIOLOGY
Jingwen Zhang, Ran He, Jia Wu, Zhihao Fan, Dong Liu, Andy Gleadall, Liguo Zhao, Simin Li
{"title":"对患者特异性主动脉根部全经导管主动脉瓣装置的交互动力学进行计算评估。","authors":"Jingwen Zhang, Ran He, Jia Wu, Zhihao Fan, Dong Liu, Andy Gleadall, Liguo Zhao, Simin Li","doi":"10.1016/j.compbiomed.2024.109512","DOIUrl":null,"url":null,"abstract":"<p><p>Transcatheter aortic valve implantation (TAVI) has become a key treatment for severe aortic stenosis, especially for patients unsuitable for surgery. Since its introduction in 2002, TAVI has advanced significantly due to improvements in imaging, operator skills, and device engineering. Despite these innovations, challenges in device sizing and positioning remain, complicating outcome predictions. Computational modelling is a powerful tool to aid TAVI device design and to understand its interactive behaviour with the aortic root during the deployment. Previous studies often simplified tissue properties, neglected patient-specific geometries or omitted crucial elements such as leaflets and fabric. This paper presents a numerical framework capable of simulating the whole crimping and deployment process of a full TAVI device in a patient-specific aortic root including the native leaflets and calcifications. We conduct a comprehensive investigation into the mechanical behaviour of the TAVI and its interactions with patient-specific aortic root through dynamic finite element analysis during the deployment process, with validation against experimental results. Additionally, we examined the influence of applied pressure during balloon inflation on the interactive dynamics of the entire model. The study concludes that selecting optimal balloon pressures is crucial for enhancing TAVI device performance and reducing complications. Numerical simulations demonstrate that appropriate balloon pressure ensures sufficient flow area and effective contact pressure between the TAVI and the aortic root, while minimising deformation and the risk of paravalvular leak.</p>","PeriodicalId":10578,"journal":{"name":"Computers in biology and medicine","volume":"185 ","pages":"109512"},"PeriodicalIF":7.0000,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computational evaluation of interactive dynamics for a full transcatheter aortic valve device in a patient-specific aortic root.\",\"authors\":\"Jingwen Zhang, Ran He, Jia Wu, Zhihao Fan, Dong Liu, Andy Gleadall, Liguo Zhao, Simin Li\",\"doi\":\"10.1016/j.compbiomed.2024.109512\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Transcatheter aortic valve implantation (TAVI) has become a key treatment for severe aortic stenosis, especially for patients unsuitable for surgery. Since its introduction in 2002, TAVI has advanced significantly due to improvements in imaging, operator skills, and device engineering. Despite these innovations, challenges in device sizing and positioning remain, complicating outcome predictions. Computational modelling is a powerful tool to aid TAVI device design and to understand its interactive behaviour with the aortic root during the deployment. Previous studies often simplified tissue properties, neglected patient-specific geometries or omitted crucial elements such as leaflets and fabric. This paper presents a numerical framework capable of simulating the whole crimping and deployment process of a full TAVI device in a patient-specific aortic root including the native leaflets and calcifications. We conduct a comprehensive investigation into the mechanical behaviour of the TAVI and its interactions with patient-specific aortic root through dynamic finite element analysis during the deployment process, with validation against experimental results. Additionally, we examined the influence of applied pressure during balloon inflation on the interactive dynamics of the entire model. The study concludes that selecting optimal balloon pressures is crucial for enhancing TAVI device performance and reducing complications. Numerical simulations demonstrate that appropriate balloon pressure ensures sufficient flow area and effective contact pressure between the TAVI and the aortic root, while minimising deformation and the risk of paravalvular leak.</p>\",\"PeriodicalId\":10578,\"journal\":{\"name\":\"Computers in biology and medicine\",\"volume\":\"185 \",\"pages\":\"109512\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2024-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers in biology and medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.compbiomed.2024.109512\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in biology and medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.compbiomed.2024.109512","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computational evaluation of interactive dynamics for a full transcatheter aortic valve device in a patient-specific aortic root.

Transcatheter aortic valve implantation (TAVI) has become a key treatment for severe aortic stenosis, especially for patients unsuitable for surgery. Since its introduction in 2002, TAVI has advanced significantly due to improvements in imaging, operator skills, and device engineering. Despite these innovations, challenges in device sizing and positioning remain, complicating outcome predictions. Computational modelling is a powerful tool to aid TAVI device design and to understand its interactive behaviour with the aortic root during the deployment. Previous studies often simplified tissue properties, neglected patient-specific geometries or omitted crucial elements such as leaflets and fabric. This paper presents a numerical framework capable of simulating the whole crimping and deployment process of a full TAVI device in a patient-specific aortic root including the native leaflets and calcifications. We conduct a comprehensive investigation into the mechanical behaviour of the TAVI and its interactions with patient-specific aortic root through dynamic finite element analysis during the deployment process, with validation against experimental results. Additionally, we examined the influence of applied pressure during balloon inflation on the interactive dynamics of the entire model. The study concludes that selecting optimal balloon pressures is crucial for enhancing TAVI device performance and reducing complications. Numerical simulations demonstrate that appropriate balloon pressure ensures sufficient flow area and effective contact pressure between the TAVI and the aortic root, while minimising deformation and the risk of paravalvular leak.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers in biology and medicine
Computers in biology and medicine 工程技术-工程:生物医学
CiteScore
11.70
自引率
10.40%
发文量
1086
审稿时长
74 days
期刊介绍: Computers in Biology and Medicine is an international forum for sharing groundbreaking advancements in the use of computers in bioscience and medicine. This journal serves as a medium for communicating essential research, instruction, ideas, and information regarding the rapidly evolving field of computer applications in these domains. By encouraging the exchange of knowledge, we aim to facilitate progress and innovation in the utilization of computers in biology and medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信