基因组位点综合功能筛选揭示CCND2及其在结直肠癌发生中的遗传调控机制

IF 3.3 3区 医学 Q2 ONCOLOGY
Bin Li, Mei Wu, Hui Geng, Yan Li, Zhirui Chen, Zequn Lu, Xu Chen, Qiuhong Wang, Shuxin Song, Xiangpan Li, Xu Zhu, Yongchang Wei, Ying Zhu, Xiaoping Miao, Jianbo Tian, Jiuyang Liu, Chaoqun Huang, Xiaojun Yang
{"title":"基因组位点综合功能筛选揭示CCND2及其在结直肠癌发生中的遗传调控机制","authors":"Bin Li, Mei Wu, Hui Geng, Yan Li, Zhirui Chen, Zequn Lu, Xu Chen, Qiuhong Wang, Shuxin Song, Xiangpan Li, Xu Zhu, Yongchang Wei, Ying Zhu, Xiaoping Miao, Jianbo Tian, Jiuyang Liu, Chaoqun Huang, Xiaojun Yang","doi":"10.1093/carcin/bgae078","DOIUrl":null,"url":null,"abstract":"<p><p>Although genome-wide association studies have identified dozens of loci associated with colorectal cancer (CRC) susceptibility, the causal genes or risk variants within these loci and their biological functions often remain elusive. Recently, the genomic locus 12p13.32, with the tag single-nucleotide polymorphism rs10774214, was identified as a crucial CRC risk locus in Asian populations. However, the functional mechanism of this region has not been fully elucidated. Here, we applied a high-throughput RNA interference approach in CRC cell lines to interrogate the function of genes in this genomic region. Multiple genes were found to affect cell functions, with CCND2 having the most significant effect as an oncogene. Moreover, overexpressed CCND2 could promote CRC cell proliferation. Subsequently, by integrating a fine-mapping analysis and multi-ancestry large-scale population cohorts consisting of 14 358 CRC cases and 34 251 healthy controls, we identified a regulatory variant rs4477507-T that contributed to an increased CRC risk in populations from China (odds ratio = 1.16, 95% confidence interval = 1.11-1.22, P = 4.45 × 10-10) and Europe (odds ratio = 1.17, 95% confidence interval = 1.12-1.21, P = 1.65 × 10-14). Functional characterization of the variant demonstrated that it could act as an allele-specific enhancer to distally facilitate the expression of CCND2 mediated by the transcription factor TEAD4. Overall, our study underscores the essential role of CCND2 in CRC development and delineates its regulatory mechanism mediated by rs4477507, establishing an epidemiological and biological link between genetic variation and CRC pathogenesis.</p>","PeriodicalId":9446,"journal":{"name":"Carcinogenesis","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrative functional screen of genomic loci uncovers CCND2 and its genetic regulatory mechanism in colorectal cancer development.\",\"authors\":\"Bin Li, Mei Wu, Hui Geng, Yan Li, Zhirui Chen, Zequn Lu, Xu Chen, Qiuhong Wang, Shuxin Song, Xiangpan Li, Xu Zhu, Yongchang Wei, Ying Zhu, Xiaoping Miao, Jianbo Tian, Jiuyang Liu, Chaoqun Huang, Xiaojun Yang\",\"doi\":\"10.1093/carcin/bgae078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Although genome-wide association studies have identified dozens of loci associated with colorectal cancer (CRC) susceptibility, the causal genes or risk variants within these loci and their biological functions often remain elusive. Recently, the genomic locus 12p13.32, with the tag single-nucleotide polymorphism rs10774214, was identified as a crucial CRC risk locus in Asian populations. However, the functional mechanism of this region has not been fully elucidated. Here, we applied a high-throughput RNA interference approach in CRC cell lines to interrogate the function of genes in this genomic region. Multiple genes were found to affect cell functions, with CCND2 having the most significant effect as an oncogene. Moreover, overexpressed CCND2 could promote CRC cell proliferation. Subsequently, by integrating a fine-mapping analysis and multi-ancestry large-scale population cohorts consisting of 14 358 CRC cases and 34 251 healthy controls, we identified a regulatory variant rs4477507-T that contributed to an increased CRC risk in populations from China (odds ratio = 1.16, 95% confidence interval = 1.11-1.22, P = 4.45 × 10-10) and Europe (odds ratio = 1.17, 95% confidence interval = 1.12-1.21, P = 1.65 × 10-14). Functional characterization of the variant demonstrated that it could act as an allele-specific enhancer to distally facilitate the expression of CCND2 mediated by the transcription factor TEAD4. Overall, our study underscores the essential role of CCND2 in CRC development and delineates its regulatory mechanism mediated by rs4477507, establishing an epidemiological and biological link between genetic variation and CRC pathogenesis.</p>\",\"PeriodicalId\":9446,\"journal\":{\"name\":\"Carcinogenesis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carcinogenesis\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/carcin/bgae078\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carcinogenesis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/carcin/bgae078","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

尽管全基因组关联研究(GWASs)已经确定了数十个与结直肠癌(CRC)易感性相关的基因座,但这些基因座中的致病基因或风险变异及其生物学功能往往仍然难以捉摸。最近,基因组位点12p13.32(标签SNP rs10774214)被确定为亚洲人群中一个关键的CRC风险位点。然而,该区域的功能机制尚未完全阐明。在这里,我们在CRC细胞系中应用了高通量RNA干扰(RNAi)方法来询问该基因组区域中基因的功能。多个基因被发现影响细胞功能,其中CCND2作为致癌基因的作用最为显著。此外,过表达的CCND2可促进结直肠癌细胞增殖。随后,通过整合精细定位分析和由14358例CRC病例和34251名健康对照组成的多祖先大规模人群队列,我们确定了一种调节变异rs4477507-T,该变异导致中国(OR = 1.16, 95%CI = 1.11-1.22, P = 4.45×10-10)和欧洲(OR = 1.17, 95%CI = 1.12-1.21, P = 1.65×10-14)人群中CRC风险增加。该变体的功能表征表明,它可以作为等位基因特异性增强子,远端促进转录因子TEAD4介导的CCND2的表达。总之,我们的研究强调了CCND2在结直肠癌发展中的重要作用,并描绘了rs4477507介导的CCND2调控机制,建立了遗传变异与结直肠癌发病之间的流行病学和生物学联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrative functional screen of genomic loci uncovers CCND2 and its genetic regulatory mechanism in colorectal cancer development.

Although genome-wide association studies have identified dozens of loci associated with colorectal cancer (CRC) susceptibility, the causal genes or risk variants within these loci and their biological functions often remain elusive. Recently, the genomic locus 12p13.32, with the tag single-nucleotide polymorphism rs10774214, was identified as a crucial CRC risk locus in Asian populations. However, the functional mechanism of this region has not been fully elucidated. Here, we applied a high-throughput RNA interference approach in CRC cell lines to interrogate the function of genes in this genomic region. Multiple genes were found to affect cell functions, with CCND2 having the most significant effect as an oncogene. Moreover, overexpressed CCND2 could promote CRC cell proliferation. Subsequently, by integrating a fine-mapping analysis and multi-ancestry large-scale population cohorts consisting of 14 358 CRC cases and 34 251 healthy controls, we identified a regulatory variant rs4477507-T that contributed to an increased CRC risk in populations from China (odds ratio = 1.16, 95% confidence interval = 1.11-1.22, P = 4.45 × 10-10) and Europe (odds ratio = 1.17, 95% confidence interval = 1.12-1.21, P = 1.65 × 10-14). Functional characterization of the variant demonstrated that it could act as an allele-specific enhancer to distally facilitate the expression of CCND2 mediated by the transcription factor TEAD4. Overall, our study underscores the essential role of CCND2 in CRC development and delineates its regulatory mechanism mediated by rs4477507, establishing an epidemiological and biological link between genetic variation and CRC pathogenesis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Carcinogenesis
Carcinogenesis 医学-肿瘤学
CiteScore
9.20
自引率
2.10%
发文量
95
审稿时长
1 months
期刊介绍: Carcinogenesis: Integrative Cancer Research is a multi-disciplinary journal that brings together all the varied aspects of research that will ultimately lead to the prevention of cancer in man. The journal publishes papers that warrant prompt publication in the areas of Biology, Genetics and Epigenetics (including the processes of promotion, progression, signal transduction, apoptosis, genomic instability, growth factors, cell and molecular biology, mutation, DNA repair, genetics, etc.), Cancer Biomarkers and Molecular Epidemiology (including genetic predisposition to cancer, and epidemiology), Inflammation, Microenvironment and Prevention (including molecular dosimetry, chemoprevention, nutrition and cancer, etc.), and Carcinogenesis (including oncogenes and tumor suppressor genes in carcinogenesis, therapy resistance of solid tumors, cancer mouse models, apoptosis and senescence, novel therapeutic targets and cancer drugs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信