{"title":"基于TCGA数据集的乳腺癌分期综合生物信息学和机器学习分析。","authors":"Saurav Chandra Das, Wahia Tasnim, Humayan Kabir Rana, Uzzal Kumar Acharjee, Md Manowarul Islam, Rabea Khatun","doi":"10.1093/bib/bbae628","DOIUrl":null,"url":null,"abstract":"<p><p>Breast cancer is an alarming global health concern, including a vast and varied set of illnesses with different molecular characteristics. The fusion of sophisticated computational methodologies with extensive biological datasets has emerged as an effective strategy for unravelling complex patterns in cancer oncology. This research delves into breast cancer staging, classification, and diagnosis by leveraging the comprehensive dataset provided by the The Cancer Genome Atlas (TCGA). By integrating advanced machine learning algorithms with bioinformatics analysis, it introduces a cutting-edge methodology for identifying complex molecular signatures associated with different subtypes and stages of breast cancer. This study utilizes TCGA gene expression data to detect and categorize breast cancer through the application of machine learning and systems biology techniques. Researchers identified differentially expressed genes in breast cancer and analyzed them using signaling pathways, protein-protein interactions, and regulatory networks to uncover potential therapeutic targets. The study also highlights the roles of specific proteins (MYH2, MYL1, MYL2, MYH7) and microRNAs (such as hsa-let-7d-5p) that are the potential biomarkers in cancer progression founded on several analyses. In terms of diagnostic accuracy for cancer staging, the random forest method achieved 97.19%, while the XGBoost algorithm attained 95.23%. Bioinformatics and machine learning meet in this study to find potential biomarkers that influence the progression of breast cancer. The combination of sophisticated analytical methods and extensive genomic datasets presents a promising path for expanding our understanding and enhancing clinical outcomes in identifying and categorizing this intricate illness.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 1","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11630003/pdf/","citationCount":"0","resultStr":"{\"title\":\"Comprehensive bioinformatics and machine learning analyses for breast cancer staging using TCGA dataset.\",\"authors\":\"Saurav Chandra Das, Wahia Tasnim, Humayan Kabir Rana, Uzzal Kumar Acharjee, Md Manowarul Islam, Rabea Khatun\",\"doi\":\"10.1093/bib/bbae628\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Breast cancer is an alarming global health concern, including a vast and varied set of illnesses with different molecular characteristics. The fusion of sophisticated computational methodologies with extensive biological datasets has emerged as an effective strategy for unravelling complex patterns in cancer oncology. This research delves into breast cancer staging, classification, and diagnosis by leveraging the comprehensive dataset provided by the The Cancer Genome Atlas (TCGA). By integrating advanced machine learning algorithms with bioinformatics analysis, it introduces a cutting-edge methodology for identifying complex molecular signatures associated with different subtypes and stages of breast cancer. This study utilizes TCGA gene expression data to detect and categorize breast cancer through the application of machine learning and systems biology techniques. Researchers identified differentially expressed genes in breast cancer and analyzed them using signaling pathways, protein-protein interactions, and regulatory networks to uncover potential therapeutic targets. The study also highlights the roles of specific proteins (MYH2, MYL1, MYL2, MYH7) and microRNAs (such as hsa-let-7d-5p) that are the potential biomarkers in cancer progression founded on several analyses. In terms of diagnostic accuracy for cancer staging, the random forest method achieved 97.19%, while the XGBoost algorithm attained 95.23%. Bioinformatics and machine learning meet in this study to find potential biomarkers that influence the progression of breast cancer. The combination of sophisticated analytical methods and extensive genomic datasets presents a promising path for expanding our understanding and enhancing clinical outcomes in identifying and categorizing this intricate illness.</p>\",\"PeriodicalId\":9209,\"journal\":{\"name\":\"Briefings in bioinformatics\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11630003/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Briefings in bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bib/bbae628\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbae628","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Comprehensive bioinformatics and machine learning analyses for breast cancer staging using TCGA dataset.
Breast cancer is an alarming global health concern, including a vast and varied set of illnesses with different molecular characteristics. The fusion of sophisticated computational methodologies with extensive biological datasets has emerged as an effective strategy for unravelling complex patterns in cancer oncology. This research delves into breast cancer staging, classification, and diagnosis by leveraging the comprehensive dataset provided by the The Cancer Genome Atlas (TCGA). By integrating advanced machine learning algorithms with bioinformatics analysis, it introduces a cutting-edge methodology for identifying complex molecular signatures associated with different subtypes and stages of breast cancer. This study utilizes TCGA gene expression data to detect and categorize breast cancer through the application of machine learning and systems biology techniques. Researchers identified differentially expressed genes in breast cancer and analyzed them using signaling pathways, protein-protein interactions, and regulatory networks to uncover potential therapeutic targets. The study also highlights the roles of specific proteins (MYH2, MYL1, MYL2, MYH7) and microRNAs (such as hsa-let-7d-5p) that are the potential biomarkers in cancer progression founded on several analyses. In terms of diagnostic accuracy for cancer staging, the random forest method achieved 97.19%, while the XGBoost algorithm attained 95.23%. Bioinformatics and machine learning meet in this study to find potential biomarkers that influence the progression of breast cancer. The combination of sophisticated analytical methods and extensive genomic datasets presents a promising path for expanding our understanding and enhancing clinical outcomes in identifying and categorizing this intricate illness.
期刊介绍:
Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data.
The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.