Ji-Young Kim, Geun-Seup Shin, Mi-Jin An, Hyun-Min Lee, Ah-Ra Jo, Yuna Park, Jinho Kim, Yujeong Hwangbo, Chul-Hong Kim, Jung-Woong Kim
{"title":"暴露于替代双酚的 H1299 细胞中细胞毒性信号通路的比较研究:BPA、BPF 和 BPS。","authors":"Ji-Young Kim, Geun-Seup Shin, Mi-Jin An, Hyun-Min Lee, Ah-Ra Jo, Yuna Park, Jinho Kim, Yujeong Hwangbo, Chul-Hong Kim, Jung-Woong Kim","doi":"10.1093/toxres/tfae200","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Bisphenols are prevalent in food, plastics, consumer goods, and industrial products. Bisphenol A (BPA) and its substitutes, bisphenol F (BPF) and bisphenol S (BPS), are known to act as estrogen mimics, leading to reproductive disorders, disruptions in fat metabolism, and abnormalities in brain development.</p><p><strong>Objectives: </strong>Despite numerous studies exploring the adverse effects of bisphenols both <i>in vitro</i> and <i>in vivo</i>, the molecular mechanisms by which these compounds affect lung cells remain poorly understood. This study aims to compare the effects of BPA, BPF, and BPS on the physiological behavior of human nonsmall cell lung cancer (NSCLC) cells.</p><p><strong>Materials and methods: </strong>Human non-small cell lung cancer (NSCLC) H1299 cells were treated with various concentration of BPA, BPF and BPS during different exposure time. Cellular physiology for viability and cell cycle was assessed by the staining with apoptotic cell makers such as active Caspase-3 and cyclins antibodies. Toxicological effect was quantitatively counted by using flow-cytometry analysis.</p><p><strong>Results: </strong>Our findings indicate that BPA induces apoptosis by increasing active Caspase-3 levels in H1299 cells, whereas BPF and BPS do not promote late apoptosis. Additionally, BPA was found to upregulate cyclin B1, causing cell cycle arrest at the G0/G1 phase and leading to apoptotic cell death through Caspase-3 activation. Conclusion: These results demonstrate that BPA, BPF, and BPS differentially impact cell viability, cell cycle progression, and cell death in human NSCLC cells.</p>","PeriodicalId":105,"journal":{"name":"Toxicology Research","volume":"13 6","pages":"tfae200"},"PeriodicalIF":2.2000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11645530/pdf/","citationCount":"0","resultStr":"{\"title\":\"Comparative study of cytotoxic Signaling pathways in H1299 cells exposed to alternative Bisphenols: BPA, BPF, and BPS.\",\"authors\":\"Ji-Young Kim, Geun-Seup Shin, Mi-Jin An, Hyun-Min Lee, Ah-Ra Jo, Yuna Park, Jinho Kim, Yujeong Hwangbo, Chul-Hong Kim, Jung-Woong Kim\",\"doi\":\"10.1093/toxres/tfae200\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Bisphenols are prevalent in food, plastics, consumer goods, and industrial products. Bisphenol A (BPA) and its substitutes, bisphenol F (BPF) and bisphenol S (BPS), are known to act as estrogen mimics, leading to reproductive disorders, disruptions in fat metabolism, and abnormalities in brain development.</p><p><strong>Objectives: </strong>Despite numerous studies exploring the adverse effects of bisphenols both <i>in vitro</i> and <i>in vivo</i>, the molecular mechanisms by which these compounds affect lung cells remain poorly understood. This study aims to compare the effects of BPA, BPF, and BPS on the physiological behavior of human nonsmall cell lung cancer (NSCLC) cells.</p><p><strong>Materials and methods: </strong>Human non-small cell lung cancer (NSCLC) H1299 cells were treated with various concentration of BPA, BPF and BPS during different exposure time. Cellular physiology for viability and cell cycle was assessed by the staining with apoptotic cell makers such as active Caspase-3 and cyclins antibodies. Toxicological effect was quantitatively counted by using flow-cytometry analysis.</p><p><strong>Results: </strong>Our findings indicate that BPA induces apoptosis by increasing active Caspase-3 levels in H1299 cells, whereas BPF and BPS do not promote late apoptosis. Additionally, BPA was found to upregulate cyclin B1, causing cell cycle arrest at the G0/G1 phase and leading to apoptotic cell death through Caspase-3 activation. Conclusion: These results demonstrate that BPA, BPF, and BPS differentially impact cell viability, cell cycle progression, and cell death in human NSCLC cells.</p>\",\"PeriodicalId\":105,\"journal\":{\"name\":\"Toxicology Research\",\"volume\":\"13 6\",\"pages\":\"tfae200\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11645530/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxicology Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/toxres/tfae200\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/toxres/tfae200","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
背景:双酚普遍存在于食品、塑料、消费品和工业产品中。众所周知,双酚 A(BPA)及其替代品双酚 F(BPF)和双酚 S(BPS)可作为雌激素模拟物,导致生殖障碍、脂肪代谢紊乱和大脑发育异常:尽管有大量研究探讨了双酚在体外和体内的不良影响,但人们对这些化合物影响肺细胞的分子机制仍然知之甚少。本研究旨在比较双酚 A、双酚 F 和双酚 S 对人类非小细胞肺癌(NSCLC)细胞生理行为的影响。材料和方法:用不同浓度的双酚 A、双酚 F 和双酚 S 处理人类非小细胞肺癌(NSCLC)H1299 细胞,暴露时间各不相同。用活性 Caspase-3 和细胞周期蛋白抗体等凋亡细胞制造者染色,评估细胞的活力和细胞周期。采用流式细胞仪分析法对毒理效应进行定量计数:结果:我们的研究结果表明,双酚 A 可通过增加 H1299 细胞中活性 Caspase-3 的水平诱导细胞凋亡,而 BPF 和 BPS 不会促进细胞晚期凋亡。此外,研究还发现双酚 A 会上调细胞周期蛋白 B1,导致细胞周期停滞在 G0/G1 期,并通过 Caspase-3 激活导致细胞凋亡。结论这些结果表明,双酚 A、双酚 F 和双酚 S 对人类 NSCLC 细胞的细胞活力、细胞周期进展和细胞死亡有不同程度的影响。
Comparative study of cytotoxic Signaling pathways in H1299 cells exposed to alternative Bisphenols: BPA, BPF, and BPS.
Background: Bisphenols are prevalent in food, plastics, consumer goods, and industrial products. Bisphenol A (BPA) and its substitutes, bisphenol F (BPF) and bisphenol S (BPS), are known to act as estrogen mimics, leading to reproductive disorders, disruptions in fat metabolism, and abnormalities in brain development.
Objectives: Despite numerous studies exploring the adverse effects of bisphenols both in vitro and in vivo, the molecular mechanisms by which these compounds affect lung cells remain poorly understood. This study aims to compare the effects of BPA, BPF, and BPS on the physiological behavior of human nonsmall cell lung cancer (NSCLC) cells.
Materials and methods: Human non-small cell lung cancer (NSCLC) H1299 cells were treated with various concentration of BPA, BPF and BPS during different exposure time. Cellular physiology for viability and cell cycle was assessed by the staining with apoptotic cell makers such as active Caspase-3 and cyclins antibodies. Toxicological effect was quantitatively counted by using flow-cytometry analysis.
Results: Our findings indicate that BPA induces apoptosis by increasing active Caspase-3 levels in H1299 cells, whereas BPF and BPS do not promote late apoptosis. Additionally, BPA was found to upregulate cyclin B1, causing cell cycle arrest at the G0/G1 phase and leading to apoptotic cell death through Caspase-3 activation. Conclusion: These results demonstrate that BPA, BPF, and BPS differentially impact cell viability, cell cycle progression, and cell death in human NSCLC cells.