{"title":"热带气旋 \"泰特利 \"引发的土地覆盖和地表温度变化研究","authors":"Srikanth Kadali, Debadatta Swain, Dikshika Mahapatra","doi":"10.1007/s10661-024-13535-9","DOIUrl":null,"url":null,"abstract":"<div><p>The intensity and frequency of tropical cyclones (TC) are on the rise due to climate change, resulting in severe damage to coastal regions. Hence, the mitigation of socioeconomic and environmental consequences of cyclones has attained paramount importance in the recent years. In this study, the rapid impact of a very severe cyclonic storm “Titli” on land cover (LC) changes were evaluated using Moderate Resolution Imaging Spectroradiometer (MODIS) and high-resolution Sentinel-2 data. The cyclonic event caused substantial modifications in land use and land cover with nearly 46% decrease in dense vegetation, 129% increase in fallow land, and 111% increase in water body, over the study region. Widespread damage (dense to less dense vegetation) was evident on the left side of the cyclone track as compared to the right. The analysis revealed a 98.3% decrease in dense vegetation, marked by a decrease in the normalized difference vegetation index (NDVI) from 0.73 to 0.44 over the landfall region. This NDVI decrease continued for nearly 3 months before the onset of vegetation regrowth. Change in vegetation into other LCs over the landfall region resulted in an increase of the mean daytime land surface temperature by ~ 6 °C. The analysis highlights the magnitude of spatiotemporal scale damages to LULC and consequent loss in seasonality that can be ushered in by a single short-duration extreme weather event like TC and thus emphasizes the need for well-formulated mitigation strategies.</p></div>","PeriodicalId":544,"journal":{"name":"Environmental Monitoring and Assessment","volume":"197 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A study of land cover and land surface temperature changes triggered by tropical cyclone “Titli”\",\"authors\":\"Srikanth Kadali, Debadatta Swain, Dikshika Mahapatra\",\"doi\":\"10.1007/s10661-024-13535-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The intensity and frequency of tropical cyclones (TC) are on the rise due to climate change, resulting in severe damage to coastal regions. Hence, the mitigation of socioeconomic and environmental consequences of cyclones has attained paramount importance in the recent years. In this study, the rapid impact of a very severe cyclonic storm “Titli” on land cover (LC) changes were evaluated using Moderate Resolution Imaging Spectroradiometer (MODIS) and high-resolution Sentinel-2 data. The cyclonic event caused substantial modifications in land use and land cover with nearly 46% decrease in dense vegetation, 129% increase in fallow land, and 111% increase in water body, over the study region. Widespread damage (dense to less dense vegetation) was evident on the left side of the cyclone track as compared to the right. The analysis revealed a 98.3% decrease in dense vegetation, marked by a decrease in the normalized difference vegetation index (NDVI) from 0.73 to 0.44 over the landfall region. This NDVI decrease continued for nearly 3 months before the onset of vegetation regrowth. Change in vegetation into other LCs over the landfall region resulted in an increase of the mean daytime land surface temperature by ~ 6 °C. The analysis highlights the magnitude of spatiotemporal scale damages to LULC and consequent loss in seasonality that can be ushered in by a single short-duration extreme weather event like TC and thus emphasizes the need for well-formulated mitigation strategies.</p></div>\",\"PeriodicalId\":544,\"journal\":{\"name\":\"Environmental Monitoring and Assessment\",\"volume\":\"197 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Monitoring and Assessment\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10661-024-13535-9\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Monitoring and Assessment","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s10661-024-13535-9","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
A study of land cover and land surface temperature changes triggered by tropical cyclone “Titli”
The intensity and frequency of tropical cyclones (TC) are on the rise due to climate change, resulting in severe damage to coastal regions. Hence, the mitigation of socioeconomic and environmental consequences of cyclones has attained paramount importance in the recent years. In this study, the rapid impact of a very severe cyclonic storm “Titli” on land cover (LC) changes were evaluated using Moderate Resolution Imaging Spectroradiometer (MODIS) and high-resolution Sentinel-2 data. The cyclonic event caused substantial modifications in land use and land cover with nearly 46% decrease in dense vegetation, 129% increase in fallow land, and 111% increase in water body, over the study region. Widespread damage (dense to less dense vegetation) was evident on the left side of the cyclone track as compared to the right. The analysis revealed a 98.3% decrease in dense vegetation, marked by a decrease in the normalized difference vegetation index (NDVI) from 0.73 to 0.44 over the landfall region. This NDVI decrease continued for nearly 3 months before the onset of vegetation regrowth. Change in vegetation into other LCs over the landfall region resulted in an increase of the mean daytime land surface temperature by ~ 6 °C. The analysis highlights the magnitude of spatiotemporal scale damages to LULC and consequent loss in seasonality that can be ushered in by a single short-duration extreme weather event like TC and thus emphasizes the need for well-formulated mitigation strategies.
期刊介绍:
Environmental Monitoring and Assessment emphasizes technical developments and data arising from environmental monitoring and assessment, the use of scientific principles in the design of monitoring systems at the local, regional and global scales, and the use of monitoring data in assessing the consequences of natural resource management actions and pollution risks to man and the environment.