O. A. Inozemtseva, E. S. Prikhozhdenko, A. M. Kartashova, Yu. A. Tyunina, A. M. Zakharevich, A. M. Burov, B. N. Khlebtsov
{"title":"基于二氧化硅微粒吸附金纳米星的SERS标签","authors":"O. A. Inozemtseva, E. S. Prikhozhdenko, A. M. Kartashova, Yu. A. Tyunina, A. M. Zakharevich, A. M. Burov, B. N. Khlebtsov","doi":"10.1134/S1061933X24600635","DOIUrl":null,"url":null,"abstract":"<p>The great interest in SERS tags as bioanalysis platforms is due to their combination of strong optical signals, photostability, and narrow spectral lines. Despite significant progress in the synthesis of new types of SERS tags based on gold nanoparticles, obtaining microparticles possessing a Raman scattering intensity sufficient for detecting a single tag using a conventional Raman microscope is not a trivial task. In this work, hybrid colloidal nanocomposites based on silica microparticles and gold nanostars (AuNST) with the SiO<sub>2</sub>/AuNSTs/SiO<sub>2</sub> composition have been synthesized and characterized. Two types of AuNSTs, one with a plasmon resonance at 700 nm and the other with two maxima at 650 and 900 nm, have been pre-synthesized and adsorbed on the surface of monodisperse colloidal silica particles 1.5 μm in diameter. Three types of thiolated aromatic molecules have been used as Raman reporters: 4-nitrothiophenol, naphthalenethiol, and 1,4-benzenedithiol. The possibility of measuring the SERS signal from a single microparticle with an intensity variation of no more than 20% has been demonstrated, as well as the possibility of multiplex determination of various microparticles in one Raman image. The stability, including photostability, of the measured SERS signal in time has been comprehensively assessed upon changes in the physicochemical parameters of a microenvironment.</p>","PeriodicalId":521,"journal":{"name":"Colloid Journal","volume":"86 6","pages":"888 - 901"},"PeriodicalIF":1.4000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SERS Tags Based on Silica Microparticles with Adsorbed Gold Nanostars\",\"authors\":\"O. A. Inozemtseva, E. S. Prikhozhdenko, A. M. Kartashova, Yu. A. Tyunina, A. M. Zakharevich, A. M. Burov, B. N. Khlebtsov\",\"doi\":\"10.1134/S1061933X24600635\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The great interest in SERS tags as bioanalysis platforms is due to their combination of strong optical signals, photostability, and narrow spectral lines. Despite significant progress in the synthesis of new types of SERS tags based on gold nanoparticles, obtaining microparticles possessing a Raman scattering intensity sufficient for detecting a single tag using a conventional Raman microscope is not a trivial task. In this work, hybrid colloidal nanocomposites based on silica microparticles and gold nanostars (AuNST) with the SiO<sub>2</sub>/AuNSTs/SiO<sub>2</sub> composition have been synthesized and characterized. Two types of AuNSTs, one with a plasmon resonance at 700 nm and the other with two maxima at 650 and 900 nm, have been pre-synthesized and adsorbed on the surface of monodisperse colloidal silica particles 1.5 μm in diameter. Three types of thiolated aromatic molecules have been used as Raman reporters: 4-nitrothiophenol, naphthalenethiol, and 1,4-benzenedithiol. The possibility of measuring the SERS signal from a single microparticle with an intensity variation of no more than 20% has been demonstrated, as well as the possibility of multiplex determination of various microparticles in one Raman image. The stability, including photostability, of the measured SERS signal in time has been comprehensively assessed upon changes in the physicochemical parameters of a microenvironment.</p>\",\"PeriodicalId\":521,\"journal\":{\"name\":\"Colloid Journal\",\"volume\":\"86 6\",\"pages\":\"888 - 901\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Colloid Journal\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1061933X24600635\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloid Journal","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1134/S1061933X24600635","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
SERS Tags Based on Silica Microparticles with Adsorbed Gold Nanostars
The great interest in SERS tags as bioanalysis platforms is due to their combination of strong optical signals, photostability, and narrow spectral lines. Despite significant progress in the synthesis of new types of SERS tags based on gold nanoparticles, obtaining microparticles possessing a Raman scattering intensity sufficient for detecting a single tag using a conventional Raman microscope is not a trivial task. In this work, hybrid colloidal nanocomposites based on silica microparticles and gold nanostars (AuNST) with the SiO2/AuNSTs/SiO2 composition have been synthesized and characterized. Two types of AuNSTs, one with a plasmon resonance at 700 nm and the other with two maxima at 650 and 900 nm, have been pre-synthesized and adsorbed on the surface of monodisperse colloidal silica particles 1.5 μm in diameter. Three types of thiolated aromatic molecules have been used as Raman reporters: 4-nitrothiophenol, naphthalenethiol, and 1,4-benzenedithiol. The possibility of measuring the SERS signal from a single microparticle with an intensity variation of no more than 20% has been demonstrated, as well as the possibility of multiplex determination of various microparticles in one Raman image. The stability, including photostability, of the measured SERS signal in time has been comprehensively assessed upon changes in the physicochemical parameters of a microenvironment.
期刊介绍:
Colloid Journal (Kolloidnyi Zhurnal) is the only journal in Russia that publishes the results of research in the area of chemical science dealing with the disperse state of matter and surface phenomena in disperse systems. The journal covers experimental and theoretical works on a great variety of colloid and surface phenomena: the structure and properties of interfaces; adsorption phenomena and structure of adsorption layers of surfactants; capillary phenomena; wetting films; wetting and spreading; and detergency. The formation of colloid systems, their molecular-kinetic and optical properties, surface forces, interaction of colloidal particles, stabilization, and criteria of stability loss of different disperse systems (lyosols and aerosols, suspensions, emulsions, foams, and micellar systems) are also topics of the journal. Colloid Journal also includes the phenomena of electro- and diffusiophoresis, electro- and thermoosmosis, and capillary and reverse osmosis, i.e., phenomena dealing with the existence of diffusion layers of molecules and ions in the vicinity of the interface.