带有针叶树细胞质谷氨酰胺合成酶基因 GS1 的转基因桦树植物的代谢概况

IF 1.1 4区 化学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
V. G. Lebedev
{"title":"带有针叶树细胞质谷氨酰胺合成酶基因 GS1 的转基因桦树植物的代谢概况","authors":"V. G. Lebedev","doi":"10.1134/S1068162024060207","DOIUrl":null,"url":null,"abstract":"<p>ve: Increasing tree productivity by genetic engineering methods is one of the main trends of forest biotechnology. A promising strategy for this is to improve the use efficiency of nitrogen, which is the main limiting factor of plant growth. For this purpose, the <i>GS1</i> gene from Scots pine was transferred to downy birch (<i>Betula pubescens</i>) plants. This gene encodes the cytosolic form of glutamine synthetase, the main enzyme of nitrogen metabolism in plants. Methods: To assess the effects of insertion of this gene, the birch plant metabolome was analyzed using GC-MS and HPLC-MS. Results and Discussion: GC-MS analysis found 197 metabolites in birch extracts, but the metabolomes of two transgenic clones showed no statistically significant differences from the control. Using the S-plot based on the OPLS-DA model, 32 metabolite markers affecting the separation of control and transgenic birch plants were detected; 22 of them were identified. Three metabolites among them were nitrogen-containing, including γ-aminobutyric acid, the immediate precursor of which is glutamine. HPLC-MS analysis found 48 metabolites, but transgenic plants did not differ from the control. GC-MS, however, showed a decrease in the content of two phenolic compounds in transgenic plants, which is characteristic of improved nitrogen supply. Conclusions: The study shows that modification of nitrogen metabolism in birch plants does not significantly affect the biochemical composition of tree shoots.</p>","PeriodicalId":758,"journal":{"name":"Russian Journal of Bioorganic Chemistry","volume":"50 6","pages":"2596 - 2610"},"PeriodicalIF":1.1000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metabolic Profile of Transgenic Birch Plants with the Conifer Cytosolic Glutamine Synthetase Gene GS1\",\"authors\":\"V. G. Lebedev\",\"doi\":\"10.1134/S1068162024060207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>ve: Increasing tree productivity by genetic engineering methods is one of the main trends of forest biotechnology. A promising strategy for this is to improve the use efficiency of nitrogen, which is the main limiting factor of plant growth. For this purpose, the <i>GS1</i> gene from Scots pine was transferred to downy birch (<i>Betula pubescens</i>) plants. This gene encodes the cytosolic form of glutamine synthetase, the main enzyme of nitrogen metabolism in plants. Methods: To assess the effects of insertion of this gene, the birch plant metabolome was analyzed using GC-MS and HPLC-MS. Results and Discussion: GC-MS analysis found 197 metabolites in birch extracts, but the metabolomes of two transgenic clones showed no statistically significant differences from the control. Using the S-plot based on the OPLS-DA model, 32 metabolite markers affecting the separation of control and transgenic birch plants were detected; 22 of them were identified. Three metabolites among them were nitrogen-containing, including γ-aminobutyric acid, the immediate precursor of which is glutamine. HPLC-MS analysis found 48 metabolites, but transgenic plants did not differ from the control. GC-MS, however, showed a decrease in the content of two phenolic compounds in transgenic plants, which is characteristic of improved nitrogen supply. Conclusions: The study shows that modification of nitrogen metabolism in birch plants does not significantly affect the biochemical composition of tree shoots.</p>\",\"PeriodicalId\":758,\"journal\":{\"name\":\"Russian Journal of Bioorganic Chemistry\",\"volume\":\"50 6\",\"pages\":\"2596 - 2610\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Journal of Bioorganic Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1068162024060207\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Bioorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1134/S1068162024060207","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。

Metabolic Profile of Transgenic Birch Plants with the Conifer Cytosolic Glutamine Synthetase Gene GS1

Metabolic Profile of Transgenic Birch Plants with the Conifer Cytosolic Glutamine Synthetase Gene GS1

ve: Increasing tree productivity by genetic engineering methods is one of the main trends of forest biotechnology. A promising strategy for this is to improve the use efficiency of nitrogen, which is the main limiting factor of plant growth. For this purpose, the GS1 gene from Scots pine was transferred to downy birch (Betula pubescens) plants. This gene encodes the cytosolic form of glutamine synthetase, the main enzyme of nitrogen metabolism in plants. Methods: To assess the effects of insertion of this gene, the birch plant metabolome was analyzed using GC-MS and HPLC-MS. Results and Discussion: GC-MS analysis found 197 metabolites in birch extracts, but the metabolomes of two transgenic clones showed no statistically significant differences from the control. Using the S-plot based on the OPLS-DA model, 32 metabolite markers affecting the separation of control and transgenic birch plants were detected; 22 of them were identified. Three metabolites among them were nitrogen-containing, including γ-aminobutyric acid, the immediate precursor of which is glutamine. HPLC-MS analysis found 48 metabolites, but transgenic plants did not differ from the control. GC-MS, however, showed a decrease in the content of two phenolic compounds in transgenic plants, which is characteristic of improved nitrogen supply. Conclusions: The study shows that modification of nitrogen metabolism in birch plants does not significantly affect the biochemical composition of tree shoots.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Russian Journal of Bioorganic Chemistry
Russian Journal of Bioorganic Chemistry 生物-生化与分子生物学
CiteScore
1.80
自引率
10.00%
发文量
118
审稿时长
3 months
期刊介绍: Russian Journal of Bioorganic Chemistry publishes reviews and original experimental and theoretical studies on the structure, function, structure–activity relationships, and synthesis of biopolymers, such as proteins, nucleic acids, polysaccharides, mixed biopolymers, and their complexes, and low-molecular-weight biologically active compounds (peptides, sugars, lipids, antibiotics, etc.). The journal also covers selected aspects of neuro- and immunochemistry, biotechnology, and ecology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信