{"title":"镧(III)正硼酸盐和偏硼酸盐中掺杂铕(III)和钇(III)离子","authors":"N. I. Steblevskaya, M. V. Belobeletskaya","doi":"10.1134/S0040579524700672","DOIUrl":null,"url":null,"abstract":"<p>Orthoborates La<sub>0.95 –</sub> <sub><i>х</i></sub>Eu<sub>0.05</sub>Y<sub><i>х</i></sub>BO<sub>3</sub> and metaborates La<sub>0.95 –</sub> <sub><i>х</i></sub>Eu<sub>0.05</sub>Y<sub><i>х</i></sub>(BO<sub>2</sub>)<sub>3</sub> (<i>х</i> = 0.025; 0.05; 0.075; 0.1; 0.2; 0.4; 0.6; 0.8; 0.95) are synthesized under optimal conditions by the extraction pyrolytic method at a lower temperature and a shorter time as compared to the known methods. In single-phase systems, the unit cell volume in La<sub>0.95 –</sub> <sub><i>х</i></sub>Eu<sub>0.05</sub>Y<sub><i>х</i></sub>BO<sub>3</sub> (aragonite structural type) and La<sub>0.95 –</sub> <sub><i>х</i></sub>Eu<sub>0.05</sub>Y<sub><i>х</i></sub>(BO<sub>2</sub>)<sub>3</sub> (α-type monoclinic polymorph) decreases with an increase in the Y<sup>3+</sup> ion content. Under excitation at an Eu<sup>3+</sup> ion luminescence maximum λ<sub>em</sub> = 615 nm, the compounds have similar luminescence excitation spectra in the region of 230–320 nm. An increase in the Y<sup>3+</sup> ion content (<i>x</i> ≥ 0.1) in both orthoborates La<sub>0.95 –</sub> <sub><i>х</i></sub>Eu<sub>0.05</sub>Y<sub><i>х</i></sub>BO<sub>3</sub> and metaborates La<sub>0.95 –</sub> <sub><i>х</i></sub>Eu<sub>0.05</sub>Y<sub><i>х</i></sub>(BO<sub>2</sub>)<sub>3</sub> leads to a certain change in the location and intensity distribution of transition bands because the nearest environment of the Eu<sup>3+</sup> ion in these compounds is transformed upon transition from one structural type to another. The introduction of the Y<sup>3+</sup> ion into La<sub>0.95</sub>Eu<sub>0.05</sub>BO<sub>3</sub> (5 mol %) or La<sub>0.95 –</sub> <sub><i>х</i></sub>Eu<sub>0.05</sub>(BO<sub>2</sub>)<sub>3</sub> (10 mol %) leads to an increase in the integral luminescence intensity. A further increase in the Y<sup>3+</sup> ion content decreases the luminescence intensity.</p>","PeriodicalId":798,"journal":{"name":"Theoretical Foundations of Chemical Engineering","volume":"58 2","pages":"409 - 416"},"PeriodicalIF":0.7000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Doping of Lanthanum(III) Orthoborates and Metaborates with Europium(III) and Yttrium(III) Ions\",\"authors\":\"N. I. Steblevskaya, M. V. Belobeletskaya\",\"doi\":\"10.1134/S0040579524700672\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Orthoborates La<sub>0.95 –</sub> <sub><i>х</i></sub>Eu<sub>0.05</sub>Y<sub><i>х</i></sub>BO<sub>3</sub> and metaborates La<sub>0.95 –</sub> <sub><i>х</i></sub>Eu<sub>0.05</sub>Y<sub><i>х</i></sub>(BO<sub>2</sub>)<sub>3</sub> (<i>х</i> = 0.025; 0.05; 0.075; 0.1; 0.2; 0.4; 0.6; 0.8; 0.95) are synthesized under optimal conditions by the extraction pyrolytic method at a lower temperature and a shorter time as compared to the known methods. In single-phase systems, the unit cell volume in La<sub>0.95 –</sub> <sub><i>х</i></sub>Eu<sub>0.05</sub>Y<sub><i>х</i></sub>BO<sub>3</sub> (aragonite structural type) and La<sub>0.95 –</sub> <sub><i>х</i></sub>Eu<sub>0.05</sub>Y<sub><i>х</i></sub>(BO<sub>2</sub>)<sub>3</sub> (α-type monoclinic polymorph) decreases with an increase in the Y<sup>3+</sup> ion content. Under excitation at an Eu<sup>3+</sup> ion luminescence maximum λ<sub>em</sub> = 615 nm, the compounds have similar luminescence excitation spectra in the region of 230–320 nm. An increase in the Y<sup>3+</sup> ion content (<i>x</i> ≥ 0.1) in both orthoborates La<sub>0.95 –</sub> <sub><i>х</i></sub>Eu<sub>0.05</sub>Y<sub><i>х</i></sub>BO<sub>3</sub> and metaborates La<sub>0.95 –</sub> <sub><i>х</i></sub>Eu<sub>0.05</sub>Y<sub><i>х</i></sub>(BO<sub>2</sub>)<sub>3</sub> leads to a certain change in the location and intensity distribution of transition bands because the nearest environment of the Eu<sup>3+</sup> ion in these compounds is transformed upon transition from one structural type to another. The introduction of the Y<sup>3+</sup> ion into La<sub>0.95</sub>Eu<sub>0.05</sub>BO<sub>3</sub> (5 mol %) or La<sub>0.95 –</sub> <sub><i>х</i></sub>Eu<sub>0.05</sub>(BO<sub>2</sub>)<sub>3</sub> (10 mol %) leads to an increase in the integral luminescence intensity. A further increase in the Y<sup>3+</sup> ion content decreases the luminescence intensity.</p>\",\"PeriodicalId\":798,\"journal\":{\"name\":\"Theoretical Foundations of Chemical Engineering\",\"volume\":\"58 2\",\"pages\":\"409 - 416\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical Foundations of Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0040579524700672\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Foundations of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0040579524700672","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Doping of Lanthanum(III) Orthoborates and Metaborates with Europium(III) and Yttrium(III) Ions
Orthoborates La0.95 –хEu0.05YхBO3 and metaborates La0.95 –хEu0.05Yх(BO2)3 (х = 0.025; 0.05; 0.075; 0.1; 0.2; 0.4; 0.6; 0.8; 0.95) are synthesized under optimal conditions by the extraction pyrolytic method at a lower temperature and a shorter time as compared to the known methods. In single-phase systems, the unit cell volume in La0.95 –хEu0.05YхBO3 (aragonite structural type) and La0.95 –хEu0.05Yх(BO2)3 (α-type monoclinic polymorph) decreases with an increase in the Y3+ ion content. Under excitation at an Eu3+ ion luminescence maximum λem = 615 nm, the compounds have similar luminescence excitation spectra in the region of 230–320 nm. An increase in the Y3+ ion content (x ≥ 0.1) in both orthoborates La0.95 –хEu0.05YхBO3 and metaborates La0.95 –хEu0.05Yх(BO2)3 leads to a certain change in the location and intensity distribution of transition bands because the nearest environment of the Eu3+ ion in these compounds is transformed upon transition from one structural type to another. The introduction of the Y3+ ion into La0.95Eu0.05BO3 (5 mol %) or La0.95 –хEu0.05(BO2)3 (10 mol %) leads to an increase in the integral luminescence intensity. A further increase in the Y3+ ion content decreases the luminescence intensity.
期刊介绍:
Theoretical Foundations of Chemical Engineering is a comprehensive journal covering all aspects of theoretical and applied research in chemical engineering, including transport phenomena; surface phenomena; processes of mixture separation; theory and methods of chemical reactor design; combined processes and multifunctional reactors; hydromechanic, thermal, diffusion, and chemical processes and apparatus, membrane processes and reactors; biotechnology; dispersed systems; nanotechnologies; process intensification; information modeling and analysis; energy- and resource-saving processes; environmentally clean processes and technologies.