优化掺铝碳化硅顶籽溶液生长过程中的碳传输和生长速率

IF 2.6 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
CrystEngComm Pub Date : 2024-11-21 DOI:10.1039/D4CE00931B
Zhouyu Tong, Xuefeng Han, Yuanchao Huang, Binjie Xu, Yanwei Yang, Deren Yang and Xiaodong Pi
{"title":"优化掺铝碳化硅顶籽溶液生长过程中的碳传输和生长速率","authors":"Zhouyu Tong, Xuefeng Han, Yuanchao Huang, Binjie Xu, Yanwei Yang, Deren Yang and Xiaodong Pi","doi":"10.1039/D4CE00931B","DOIUrl":null,"url":null,"abstract":"<p >The top-seeded solution growth (TSSG) method is an emerging technique for the production of silicon carbide (SiC). Due to its advantage of lower growth temperature compared to the physical vapor transport method, it holds significant potential in the preparation of Al-doped SiC. In this study, a global numerical model calculating heat and mass transfer was established to investigate the impact of solution radius and height, coil position, and rotational speed of the seed crystal on the flow pattern and carbon transport. The results indicated that a meticulous determination of these growth parameters could enhance both carbon transport and growth rate. Furthermore, abundant transient calculation results were utilized to train back-propagation (BP) neural networks to extract the correlation between growth parameters, growth rate, and Al concentration. The optimal parameters were ultimately obtained using the non-dominated sorting genetic algorithm (NSGA-II). The Al concentration calculated in the solution under the optimal growth conditions demonstrated that the evaporation of Al was sufficiently low to satisfy the p-type doping requirement. This study provides valuable insights for the future development of a TSSG system tailored for the rapid growth of Al-doped SiC.</p>","PeriodicalId":70,"journal":{"name":"CrystEngComm","volume":" 1","pages":" 90-101"},"PeriodicalIF":2.6000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of carbon transport and growth rates in top-seeded solution growth of Al-doped SiC\",\"authors\":\"Zhouyu Tong, Xuefeng Han, Yuanchao Huang, Binjie Xu, Yanwei Yang, Deren Yang and Xiaodong Pi\",\"doi\":\"10.1039/D4CE00931B\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The top-seeded solution growth (TSSG) method is an emerging technique for the production of silicon carbide (SiC). Due to its advantage of lower growth temperature compared to the physical vapor transport method, it holds significant potential in the preparation of Al-doped SiC. In this study, a global numerical model calculating heat and mass transfer was established to investigate the impact of solution radius and height, coil position, and rotational speed of the seed crystal on the flow pattern and carbon transport. The results indicated that a meticulous determination of these growth parameters could enhance both carbon transport and growth rate. Furthermore, abundant transient calculation results were utilized to train back-propagation (BP) neural networks to extract the correlation between growth parameters, growth rate, and Al concentration. The optimal parameters were ultimately obtained using the non-dominated sorting genetic algorithm (NSGA-II). The Al concentration calculated in the solution under the optimal growth conditions demonstrated that the evaporation of Al was sufficiently low to satisfy the p-type doping requirement. This study provides valuable insights for the future development of a TSSG system tailored for the rapid growth of Al-doped SiC.</p>\",\"PeriodicalId\":70,\"journal\":{\"name\":\"CrystEngComm\",\"volume\":\" 1\",\"pages\":\" 90-101\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CrystEngComm\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ce/d4ce00931b\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CrystEngComm","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ce/d4ce00931b","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。

Optimization of carbon transport and growth rates in top-seeded solution growth of Al-doped SiC

Optimization of carbon transport and growth rates in top-seeded solution growth of Al-doped SiC

The top-seeded solution growth (TSSG) method is an emerging technique for the production of silicon carbide (SiC). Due to its advantage of lower growth temperature compared to the physical vapor transport method, it holds significant potential in the preparation of Al-doped SiC. In this study, a global numerical model calculating heat and mass transfer was established to investigate the impact of solution radius and height, coil position, and rotational speed of the seed crystal on the flow pattern and carbon transport. The results indicated that a meticulous determination of these growth parameters could enhance both carbon transport and growth rate. Furthermore, abundant transient calculation results were utilized to train back-propagation (BP) neural networks to extract the correlation between growth parameters, growth rate, and Al concentration. The optimal parameters were ultimately obtained using the non-dominated sorting genetic algorithm (NSGA-II). The Al concentration calculated in the solution under the optimal growth conditions demonstrated that the evaporation of Al was sufficiently low to satisfy the p-type doping requirement. This study provides valuable insights for the future development of a TSSG system tailored for the rapid growth of Al-doped SiC.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CrystEngComm
CrystEngComm 化学-化学综合
CiteScore
5.50
自引率
9.70%
发文量
747
审稿时长
1.7 months
期刊介绍: Design and understanding of solid-state and crystalline materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信