具有 d-Knapsack 约束条件的 k 次模态函数在滑动窗口上的最大化

IF 6.6 1区 计算机科学 Q1 Multidisciplinary
Wenqi Wang;Yuefang Sun;Zhiren Sun;Donglei Du;Xiaoyan Zhang
{"title":"具有 d-Knapsack 约束条件的 k 次模态函数在滑动窗口上的最大化","authors":"Wenqi Wang;Yuefang Sun;Zhiren Sun;Donglei Du;Xiaoyan Zhang","doi":"10.26599/TST.2023.9010121","DOIUrl":null,"url":null,"abstract":"Submodular function maximization problem has been extensively studied recently. A natural variant of submodular function is k-submodular function, which has many applications in real life, such as influence maximization and sensor placement problem. The domain of a \n<tex>$k$</tex>\n -submodular function has \n<tex>$k$</tex>\n disjoint subsets, and hence includes submodular function as a special case when \n<tex>$k=1$</tex>\n. This work investigates the k-submodular function maximization problem with d-knapsack constraints over the sliding window. Based on the smooth histogram technique, we design a deterministic approximation algorithm. Furthermore, we propose a randomized algorithm to improve the approximation ratio.","PeriodicalId":48690,"journal":{"name":"Tsinghua Science and Technology","volume":"30 2","pages":"488-498"},"PeriodicalIF":6.6000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10786950","citationCount":"0","resultStr":"{\"title\":\"Maximization of k-Submodular Function with d-Knapsack Constraints Over Sliding Window\",\"authors\":\"Wenqi Wang;Yuefang Sun;Zhiren Sun;Donglei Du;Xiaoyan Zhang\",\"doi\":\"10.26599/TST.2023.9010121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Submodular function maximization problem has been extensively studied recently. A natural variant of submodular function is k-submodular function, which has many applications in real life, such as influence maximization and sensor placement problem. The domain of a \\n<tex>$k$</tex>\\n -submodular function has \\n<tex>$k$</tex>\\n disjoint subsets, and hence includes submodular function as a special case when \\n<tex>$k=1$</tex>\\n. This work investigates the k-submodular function maximization problem with d-knapsack constraints over the sliding window. Based on the smooth histogram technique, we design a deterministic approximation algorithm. Furthermore, we propose a randomized algorithm to improve the approximation ratio.\",\"PeriodicalId\":48690,\"journal\":{\"name\":\"Tsinghua Science and Technology\",\"volume\":\"30 2\",\"pages\":\"488-498\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2024-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10786950\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tsinghua Science and Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10786950/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Multidisciplinary\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tsinghua Science and Technology","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10786950/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0

摘要

次模函数最大化问题近年来得到了广泛的研究。子模函数的一种自然变体是k-子模函数,它在现实生活中有许多应用,如影响最大化和传感器放置问题。$k$ -子模函数的定义域有$k$不相交的子集,因此当$k$ =1$时包含子模函数作为特例。本文研究了滑动窗口上具有d背包约束的k次模函数最大化问题。基于平滑直方图技术,设计了一种确定性逼近算法。此外,我们提出了一种随机化算法来提高近似比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Maximization of k-Submodular Function with d-Knapsack Constraints Over Sliding Window
Submodular function maximization problem has been extensively studied recently. A natural variant of submodular function is k-submodular function, which has many applications in real life, such as influence maximization and sensor placement problem. The domain of a $k$ -submodular function has $k$ disjoint subsets, and hence includes submodular function as a special case when $k=1$ . This work investigates the k-submodular function maximization problem with d-knapsack constraints over the sliding window. Based on the smooth histogram technique, we design a deterministic approximation algorithm. Furthermore, we propose a randomized algorithm to improve the approximation ratio.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tsinghua Science and Technology
Tsinghua Science and Technology COMPUTER SCIENCE, INFORMATION SYSTEMSCOMPU-COMPUTER SCIENCE, SOFTWARE ENGINEERING
CiteScore
10.20
自引率
10.60%
发文量
2340
期刊介绍: Tsinghua Science and Technology (Tsinghua Sci Technol) started publication in 1996. It is an international academic journal sponsored by Tsinghua University and is published bimonthly. This journal aims at presenting the up-to-date scientific achievements in computer science, electronic engineering, and other IT fields. Contributions all over the world are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信