基于单传感器和关节特征的跌倒检测设备

IF 6.6 1区 计算机科学 Q1 Multidisciplinary
Li Zhang;Yu-An Liu;Qiuyu Wang;Huilin Chen;Jingao Xu;Danyang Li
{"title":"基于单传感器和关节特征的跌倒检测设备","authors":"Li Zhang;Yu-An Liu;Qiuyu Wang;Huilin Chen;Jingao Xu;Danyang Li","doi":"10.26599/TST.2023.9010129","DOIUrl":null,"url":null,"abstract":"Accidental falls pose a significant threat to the well-being of the elderly, thus facilitating a quantum leap in the field of fall detection technology. For fall detection, accurate identification of fall behavior is a key priority. Our study proposes an innovative methodology to detect falls during activities of daily living (ADL), with the objective of preventing further harm. Our design aims to achieve precise identification of falls by extracting a variety of features obtained from the simultaneous acquisition of acceleration and angular velocity data using a single sensor. To enhance detection accuracy and reduce false alarms, we establish a classifier based on the joint acceleration and Euler angle feature (JAEF) analysis. With the aid of a support vector machine (SVM) classifier, human activities are classified into eight categories: going upstairs, going downstairs, running, walking, falling forward, falling backward, falling left, and falling right. In particular, we introduce a novel approach to enhance the accuracy of fall detection algorithms by introducing the Equal Signal Amplitude Difference method. Through experimental demonstration, the proposed method exhibits a remarkable sensitivity of 99.25%, precision of 98.75%, and excels in classification accuracy. It is noteworthy that the utilization of multiple features proves more effective than relying solely on a single aspect. The preliminary findings highlight the promising applications of our study in the field of fall injury systems.","PeriodicalId":48690,"journal":{"name":"Tsinghua Science and Technology","volume":"30 2","pages":"695-707"},"PeriodicalIF":6.6000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10786934","citationCount":"0","resultStr":"{\"title\":\"A Fall Detection Device Based on Single Sensor Combined with Joint Features\",\"authors\":\"Li Zhang;Yu-An Liu;Qiuyu Wang;Huilin Chen;Jingao Xu;Danyang Li\",\"doi\":\"10.26599/TST.2023.9010129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accidental falls pose a significant threat to the well-being of the elderly, thus facilitating a quantum leap in the field of fall detection technology. For fall detection, accurate identification of fall behavior is a key priority. Our study proposes an innovative methodology to detect falls during activities of daily living (ADL), with the objective of preventing further harm. Our design aims to achieve precise identification of falls by extracting a variety of features obtained from the simultaneous acquisition of acceleration and angular velocity data using a single sensor. To enhance detection accuracy and reduce false alarms, we establish a classifier based on the joint acceleration and Euler angle feature (JAEF) analysis. With the aid of a support vector machine (SVM) classifier, human activities are classified into eight categories: going upstairs, going downstairs, running, walking, falling forward, falling backward, falling left, and falling right. In particular, we introduce a novel approach to enhance the accuracy of fall detection algorithms by introducing the Equal Signal Amplitude Difference method. Through experimental demonstration, the proposed method exhibits a remarkable sensitivity of 99.25%, precision of 98.75%, and excels in classification accuracy. It is noteworthy that the utilization of multiple features proves more effective than relying solely on a single aspect. The preliminary findings highlight the promising applications of our study in the field of fall injury systems.\",\"PeriodicalId\":48690,\"journal\":{\"name\":\"Tsinghua Science and Technology\",\"volume\":\"30 2\",\"pages\":\"695-707\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2024-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10786934\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tsinghua Science and Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10786934/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Multidisciplinary\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tsinghua Science and Technology","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10786934/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0

摘要

意外跌倒对老年人的健康构成了重大威胁,因此促进了跌倒检测技术领域的巨大飞跃。对于跌倒检测,准确识别跌倒行为是一个关键的优先事项。我们的研究提出了一种创新的方法来检测日常生活活动(ADL)中的跌倒,以防止进一步的伤害。我们的设计旨在通过使用单个传感器同时获取加速度和角速度数据,提取各种特征,从而实现对跌倒的精确识别。为了提高检测精度,减少误报,我们建立了基于加速度和欧拉角联合特征(JAEF)分析的分类器。借助支持向量机(SVM)分类器,将人类活动分为上楼、下楼、跑步、行走、向前跌倒、向后跌倒、向左跌倒、向右跌倒八类。特别地,我们介绍了一种新的方法,通过引入等信号振幅差分法来提高跌落检测算法的准确性。通过实验验证,该方法的灵敏度为99.25%,准确率为98.75%,分类准确率较高。值得注意的是,事实证明,利用多个特性比仅仅依赖单个方面更有效。初步研究结果突出了我们的研究在跌倒损伤系统领域的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Fall Detection Device Based on Single Sensor Combined with Joint Features
Accidental falls pose a significant threat to the well-being of the elderly, thus facilitating a quantum leap in the field of fall detection technology. For fall detection, accurate identification of fall behavior is a key priority. Our study proposes an innovative methodology to detect falls during activities of daily living (ADL), with the objective of preventing further harm. Our design aims to achieve precise identification of falls by extracting a variety of features obtained from the simultaneous acquisition of acceleration and angular velocity data using a single sensor. To enhance detection accuracy and reduce false alarms, we establish a classifier based on the joint acceleration and Euler angle feature (JAEF) analysis. With the aid of a support vector machine (SVM) classifier, human activities are classified into eight categories: going upstairs, going downstairs, running, walking, falling forward, falling backward, falling left, and falling right. In particular, we introduce a novel approach to enhance the accuracy of fall detection algorithms by introducing the Equal Signal Amplitude Difference method. Through experimental demonstration, the proposed method exhibits a remarkable sensitivity of 99.25%, precision of 98.75%, and excels in classification accuracy. It is noteworthy that the utilization of multiple features proves more effective than relying solely on a single aspect. The preliminary findings highlight the promising applications of our study in the field of fall injury systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tsinghua Science and Technology
Tsinghua Science and Technology COMPUTER SCIENCE, INFORMATION SYSTEMSCOMPU-COMPUTER SCIENCE, SOFTWARE ENGINEERING
CiteScore
10.20
自引率
10.60%
发文量
2340
期刊介绍: Tsinghua Science and Technology (Tsinghua Sci Technol) started publication in 1996. It is an international academic journal sponsored by Tsinghua University and is published bimonthly. This journal aims at presenting the up-to-date scientific achievements in computer science, electronic engineering, and other IT fields. Contributions all over the world are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信