利用双光谱 Sentinel-1 时间序列在各种地形和天气条件下自动绘制基于合成孔径雷达的油菜籽地图

IF 11.1 1区 地球科学 Q1 ENVIRONMENTAL SCIENCES
Shuai Xu, Xiaolin Zhu, Ruyin Cao, Jin Chen, Xiaoli Ding
{"title":"利用双光谱 Sentinel-1 时间序列在各种地形和天气条件下自动绘制基于合成孔径雷达的油菜籽地图","authors":"Shuai Xu, Xiaolin Zhu, Ruyin Cao, Jin Chen, Xiaoli Ding","doi":"10.1016/j.rse.2024.114567","DOIUrl":null,"url":null,"abstract":"Timely and reliable rapeseed mapping is crucial for vegetable oil supply and bioenergy industry. Synthetic Aperture Radar (SAR) remote sensing is able to track rapeseed phenology and map rapeseed fields in cloudy regions. However, SAR-based rapeseed mapping is challenging in mountainous areas due to the highly fragmented farming land and terrain-induced distortions on SAR signals. To address this challenge, this study proposed a novel SAR-based automatic rapeseed mapping (SARM) method for all terrain and weather conditions. SARM first composites high-quality dual-aspect Sentinel-1 time series by combining ascending and descending orbits and smoothing temporal noises. Second, SARM embeds a novel terrain-adjustment modeling to mitigate confounding terrain effects on the SAR intensity of sloped pixels. Third, SARM quantifies unique shape and intensity features of SAR signals during the leaf-flower-pod period to estimate the probability of rapeseed cultivation with the aid of automatically extracted local high-confidence rapeseed pixels. SARM was tested at three sites with varying topographic conditions, rapeseed phenology and cultivation systems. Results demonstrate that SARM achieved accurate rapeseed mapping with the overall accuracy 0.9 or higher, and F1 score 0.85 or higher at all three sites. Compared with the existing rapeseed mapping methods, SARM excelled in mapping fragmented rapeseed fields in both flat and sloped terrains. SARM utilizes unique and universal SAR time-series features of rapeseed growth without relying on any prior knowledge or pre-collected training samples, making it flexible and robust for cross-regional rapeseed mapping, especially for cloudy and mountainous regions where optical data is often contaminated by clouds during rapeseed growing stages.","PeriodicalId":417,"journal":{"name":"Remote Sensing of Environment","volume":"28 1","pages":""},"PeriodicalIF":11.1000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automatic SAR-based rapeseed mapping in all terrain and weather conditions using dual-aspect Sentinel-1 time series\",\"authors\":\"Shuai Xu, Xiaolin Zhu, Ruyin Cao, Jin Chen, Xiaoli Ding\",\"doi\":\"10.1016/j.rse.2024.114567\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Timely and reliable rapeseed mapping is crucial for vegetable oil supply and bioenergy industry. Synthetic Aperture Radar (SAR) remote sensing is able to track rapeseed phenology and map rapeseed fields in cloudy regions. However, SAR-based rapeseed mapping is challenging in mountainous areas due to the highly fragmented farming land and terrain-induced distortions on SAR signals. To address this challenge, this study proposed a novel SAR-based automatic rapeseed mapping (SARM) method for all terrain and weather conditions. SARM first composites high-quality dual-aspect Sentinel-1 time series by combining ascending and descending orbits and smoothing temporal noises. Second, SARM embeds a novel terrain-adjustment modeling to mitigate confounding terrain effects on the SAR intensity of sloped pixels. Third, SARM quantifies unique shape and intensity features of SAR signals during the leaf-flower-pod period to estimate the probability of rapeseed cultivation with the aid of automatically extracted local high-confidence rapeseed pixels. SARM was tested at three sites with varying topographic conditions, rapeseed phenology and cultivation systems. Results demonstrate that SARM achieved accurate rapeseed mapping with the overall accuracy 0.9 or higher, and F1 score 0.85 or higher at all three sites. Compared with the existing rapeseed mapping methods, SARM excelled in mapping fragmented rapeseed fields in both flat and sloped terrains. SARM utilizes unique and universal SAR time-series features of rapeseed growth without relying on any prior knowledge or pre-collected training samples, making it flexible and robust for cross-regional rapeseed mapping, especially for cloudy and mountainous regions where optical data is often contaminated by clouds during rapeseed growing stages.\",\"PeriodicalId\":417,\"journal\":{\"name\":\"Remote Sensing of Environment\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":11.1000,\"publicationDate\":\"2024-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Remote Sensing of Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.rse.2024.114567\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing of Environment","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.rse.2024.114567","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic SAR-based rapeseed mapping in all terrain and weather conditions using dual-aspect Sentinel-1 time series
Timely and reliable rapeseed mapping is crucial for vegetable oil supply and bioenergy industry. Synthetic Aperture Radar (SAR) remote sensing is able to track rapeseed phenology and map rapeseed fields in cloudy regions. However, SAR-based rapeseed mapping is challenging in mountainous areas due to the highly fragmented farming land and terrain-induced distortions on SAR signals. To address this challenge, this study proposed a novel SAR-based automatic rapeseed mapping (SARM) method for all terrain and weather conditions. SARM first composites high-quality dual-aspect Sentinel-1 time series by combining ascending and descending orbits and smoothing temporal noises. Second, SARM embeds a novel terrain-adjustment modeling to mitigate confounding terrain effects on the SAR intensity of sloped pixels. Third, SARM quantifies unique shape and intensity features of SAR signals during the leaf-flower-pod period to estimate the probability of rapeseed cultivation with the aid of automatically extracted local high-confidence rapeseed pixels. SARM was tested at three sites with varying topographic conditions, rapeseed phenology and cultivation systems. Results demonstrate that SARM achieved accurate rapeseed mapping with the overall accuracy 0.9 or higher, and F1 score 0.85 or higher at all three sites. Compared with the existing rapeseed mapping methods, SARM excelled in mapping fragmented rapeseed fields in both flat and sloped terrains. SARM utilizes unique and universal SAR time-series features of rapeseed growth without relying on any prior knowledge or pre-collected training samples, making it flexible and robust for cross-regional rapeseed mapping, especially for cloudy and mountainous regions where optical data is often contaminated by clouds during rapeseed growing stages.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Remote Sensing of Environment
Remote Sensing of Environment 环境科学-成像科学与照相技术
CiteScore
25.10
自引率
8.90%
发文量
455
审稿时长
53 days
期刊介绍: Remote Sensing of Environment (RSE) serves the Earth observation community by disseminating results on the theory, science, applications, and technology that contribute to advancing the field of remote sensing. With a thoroughly interdisciplinary approach, RSE encompasses terrestrial, oceanic, and atmospheric sensing. The journal emphasizes biophysical and quantitative approaches to remote sensing at local to global scales, covering a diverse range of applications and techniques. RSE serves as a vital platform for the exchange of knowledge and advancements in the dynamic field of remote sensing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信