通过高速激光直接能量沉积形成的铬镍铁合金 625 涂层对 Q235 钢疲劳特性的影响

IF 5.7 2区 材料科学 Q1 ENGINEERING, MECHANICAL
Cheng Zhong, Peng Liu, Xuechong Ren, Benli Luan, Alex A. Volinsky
{"title":"通过高速激光直接能量沉积形成的铬镍铁合金 625 涂层对 Q235 钢疲劳特性的影响","authors":"Cheng Zhong, Peng Liu, Xuechong Ren, Benli Luan, Alex A. Volinsky","doi":"10.1016/j.ijfatigue.2024.108746","DOIUrl":null,"url":null,"abstract":"Single-layer and double-layer Inconel 625 coatings were deposited on the Q235 steel using high-speed laser direct energy deposition (HL-DED). Steel grains in heat-affected zone (HAZ) coarsened due to the heat generated during the single-layer coating deposition. In contrast, double-layer coating specimens exhibited fine-grain regions in the HAZ due to repeated laser treatment reaching the solid-state phase transition temperature. Compared to bare Q235 steel, the yield and ultimate tensile strength of the single-layer coated specimens increased by 25% and 21%, respectively, while their elongation decreased by 32%. Tensile strength increased, while elongation decreased with the coating thickness. Although fatigue performance of bulk HL-DED Inconel 625 and as-deposited coating specimens was lower than bare Q235 steel, polished coated specimens exhibited better fatigue performance than bare Q235 steel. The coating thickness in the as-deposited condition had minimal impact on fatigue performance, but the fatigue performance of the polished coated specimens decreased with coating thickness. Corrosion fatigue life of the single-layer coated specimens in a 3.5% NaCl solution was three times better than bare Q235, and the fatigue life of double-layer coated specimens is not affected by the corrosive environment.","PeriodicalId":14112,"journal":{"name":"International Journal of Fatigue","volume":"120 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Inconel 625 coating via high-speed laser direct energy deposition on the fatigue characteristics of Q235 steel\",\"authors\":\"Cheng Zhong, Peng Liu, Xuechong Ren, Benli Luan, Alex A. Volinsky\",\"doi\":\"10.1016/j.ijfatigue.2024.108746\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Single-layer and double-layer Inconel 625 coatings were deposited on the Q235 steel using high-speed laser direct energy deposition (HL-DED). Steel grains in heat-affected zone (HAZ) coarsened due to the heat generated during the single-layer coating deposition. In contrast, double-layer coating specimens exhibited fine-grain regions in the HAZ due to repeated laser treatment reaching the solid-state phase transition temperature. Compared to bare Q235 steel, the yield and ultimate tensile strength of the single-layer coated specimens increased by 25% and 21%, respectively, while their elongation decreased by 32%. Tensile strength increased, while elongation decreased with the coating thickness. Although fatigue performance of bulk HL-DED Inconel 625 and as-deposited coating specimens was lower than bare Q235 steel, polished coated specimens exhibited better fatigue performance than bare Q235 steel. The coating thickness in the as-deposited condition had minimal impact on fatigue performance, but the fatigue performance of the polished coated specimens decreased with coating thickness. Corrosion fatigue life of the single-layer coated specimens in a 3.5% NaCl solution was three times better than bare Q235, and the fatigue life of double-layer coated specimens is not affected by the corrosive environment.\",\"PeriodicalId\":14112,\"journal\":{\"name\":\"International Journal of Fatigue\",\"volume\":\"120 1\",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Fatigue\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ijfatigue.2024.108746\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fatigue","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.ijfatigue.2024.108746","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of Inconel 625 coating via high-speed laser direct energy deposition on the fatigue characteristics of Q235 steel
Single-layer and double-layer Inconel 625 coatings were deposited on the Q235 steel using high-speed laser direct energy deposition (HL-DED). Steel grains in heat-affected zone (HAZ) coarsened due to the heat generated during the single-layer coating deposition. In contrast, double-layer coating specimens exhibited fine-grain regions in the HAZ due to repeated laser treatment reaching the solid-state phase transition temperature. Compared to bare Q235 steel, the yield and ultimate tensile strength of the single-layer coated specimens increased by 25% and 21%, respectively, while their elongation decreased by 32%. Tensile strength increased, while elongation decreased with the coating thickness. Although fatigue performance of bulk HL-DED Inconel 625 and as-deposited coating specimens was lower than bare Q235 steel, polished coated specimens exhibited better fatigue performance than bare Q235 steel. The coating thickness in the as-deposited condition had minimal impact on fatigue performance, but the fatigue performance of the polished coated specimens decreased with coating thickness. Corrosion fatigue life of the single-layer coated specimens in a 3.5% NaCl solution was three times better than bare Q235, and the fatigue life of double-layer coated specimens is not affected by the corrosive environment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Fatigue
International Journal of Fatigue 工程技术-材料科学:综合
CiteScore
10.70
自引率
21.70%
发文量
619
审稿时长
58 days
期刊介绍: Typical subjects discussed in International Journal of Fatigue address: Novel fatigue testing and characterization methods (new kinds of fatigue tests, critical evaluation of existing methods, in situ measurement of fatigue degradation, non-contact field measurements) Multiaxial fatigue and complex loading effects of materials and structures, exploring state-of-the-art concepts in degradation under cyclic loading Fatigue in the very high cycle regime, including failure mode transitions from surface to subsurface, effects of surface treatment, processing, and loading conditions Modeling (including degradation processes and related driving forces, multiscale/multi-resolution methods, computational hierarchical and concurrent methods for coupled component and material responses, novel methods for notch root analysis, fracture mechanics, damage mechanics, crack growth kinetics, life prediction and durability, and prediction of stochastic fatigue behavior reflecting microstructure and service conditions) Models for early stages of fatigue crack formation and growth that explicitly consider microstructure and relevant materials science aspects Understanding the influence or manufacturing and processing route on fatigue degradation, and embedding this understanding in more predictive schemes for mitigation and design against fatigue Prognosis and damage state awareness (including sensors, monitoring, methodology, interactive control, accelerated methods, data interpretation) Applications of technologies associated with fatigue and their implications for structural integrity and reliability. This includes issues related to design, operation and maintenance, i.e., life cycle engineering Smart materials and structures that can sense and mitigate fatigue degradation Fatigue of devices and structures at small scales, including effects of process route and surfaces/interfaces.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信