用声光热多信息融合方法研究温度对平纹编织复合材料疲劳性能的影响

IF 5.7 2区 材料科学 Q1 ENGINEERING, MECHANICAL
Xiaodong Liu, Kai Huang, Jindi Zhou, Xiaojian Han, Erqin Dong, Li Zhang, Licheng Guo
{"title":"用声光热多信息融合方法研究温度对平纹编织复合材料疲劳性能的影响","authors":"Xiaodong Liu, Kai Huang, Jindi Zhou, Xiaojian Han, Erqin Dong, Li Zhang, Licheng Guo","doi":"10.1016/j.ijfatigue.2024.108757","DOIUrl":null,"url":null,"abstract":"To investigate the temperature effect on the fatigue performance of plain-woven composites, a multi-information fusion method for damage identification under high-temperature conditions was established by integrating acoustic emission (AE), digital image correlation (DIC), infrared thermography (IRT) and scanning electron microscopy (SEM). Equipment for high-temperature AE and DIC acquisition was developed, and fatigue experiments were conducted at room temperature (25 °C), 100 °C, and 150 °C with <ce:italic>in-situ</ce:italic> observation. The AE data were classified into three clusters using the k-means++ method, corresponding to three damage modes with specific peak frequency ranges: matrix cracking (0 ∼ 200 kHz), fiber/matrix debonding (200 ∼ 400 kHz), and fiber breakage (400 ∼ 700 kHz), respectively. The AE results were cross-validated by analyzing surface temperature and strain fields during the fatigue process. The study revealed that higher temperatures accelerate damage accumulation during fatigue, relieve stress concentration and alter the damage proportion, but have little effect on the influence of fatigue stress levels.","PeriodicalId":14112,"journal":{"name":"International Journal of Fatigue","volume":"30 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Temperature effects on fatigue properties of plain-woven composites by an acoustic-optical-thermal multi-information fusion method\",\"authors\":\"Xiaodong Liu, Kai Huang, Jindi Zhou, Xiaojian Han, Erqin Dong, Li Zhang, Licheng Guo\",\"doi\":\"10.1016/j.ijfatigue.2024.108757\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To investigate the temperature effect on the fatigue performance of plain-woven composites, a multi-information fusion method for damage identification under high-temperature conditions was established by integrating acoustic emission (AE), digital image correlation (DIC), infrared thermography (IRT) and scanning electron microscopy (SEM). Equipment for high-temperature AE and DIC acquisition was developed, and fatigue experiments were conducted at room temperature (25 °C), 100 °C, and 150 °C with <ce:italic>in-situ</ce:italic> observation. The AE data were classified into three clusters using the k-means++ method, corresponding to three damage modes with specific peak frequency ranges: matrix cracking (0 ∼ 200 kHz), fiber/matrix debonding (200 ∼ 400 kHz), and fiber breakage (400 ∼ 700 kHz), respectively. The AE results were cross-validated by analyzing surface temperature and strain fields during the fatigue process. The study revealed that higher temperatures accelerate damage accumulation during fatigue, relieve stress concentration and alter the damage proportion, but have little effect on the influence of fatigue stress levels.\",\"PeriodicalId\":14112,\"journal\":{\"name\":\"International Journal of Fatigue\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Fatigue\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ijfatigue.2024.108757\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fatigue","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.ijfatigue.2024.108757","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

为了研究温度对平纹编织复合材料疲劳性能的影响,采用声发射(AE)、数字图像相关(DIC)、红外热像仪(IRT)和扫描电镜(SEM)相结合的方法,建立了一种多信息融合的高温损伤识别方法。研制了高温声发射和DIC采集设备,在室温(25℃)、100℃和150℃下进行了原位观察疲劳实验。使用k-means++方法将声发射数据分为三组,分别对应于具有特定峰值频率范围的三种损伤模式:基质开裂(0 ~ 200 kHz)、纤维/基质脱粘(200 ~ 400 kHz)和纤维断裂(400 ~ 700 kHz)。通过分析疲劳过程中的表面温度场和应变场,对声发射结果进行了交叉验证。研究表明,高温加速了疲劳过程中的损伤积累,缓解了应力集中,改变了损伤比例,但对疲劳应力水平的影响不大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Temperature effects on fatigue properties of plain-woven composites by an acoustic-optical-thermal multi-information fusion method
To investigate the temperature effect on the fatigue performance of plain-woven composites, a multi-information fusion method for damage identification under high-temperature conditions was established by integrating acoustic emission (AE), digital image correlation (DIC), infrared thermography (IRT) and scanning electron microscopy (SEM). Equipment for high-temperature AE and DIC acquisition was developed, and fatigue experiments were conducted at room temperature (25 °C), 100 °C, and 150 °C with in-situ observation. The AE data were classified into three clusters using the k-means++ method, corresponding to three damage modes with specific peak frequency ranges: matrix cracking (0 ∼ 200 kHz), fiber/matrix debonding (200 ∼ 400 kHz), and fiber breakage (400 ∼ 700 kHz), respectively. The AE results were cross-validated by analyzing surface temperature and strain fields during the fatigue process. The study revealed that higher temperatures accelerate damage accumulation during fatigue, relieve stress concentration and alter the damage proportion, but have little effect on the influence of fatigue stress levels.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Fatigue
International Journal of Fatigue 工程技术-材料科学:综合
CiteScore
10.70
自引率
21.70%
发文量
619
审稿时长
58 days
期刊介绍: Typical subjects discussed in International Journal of Fatigue address: Novel fatigue testing and characterization methods (new kinds of fatigue tests, critical evaluation of existing methods, in situ measurement of fatigue degradation, non-contact field measurements) Multiaxial fatigue and complex loading effects of materials and structures, exploring state-of-the-art concepts in degradation under cyclic loading Fatigue in the very high cycle regime, including failure mode transitions from surface to subsurface, effects of surface treatment, processing, and loading conditions Modeling (including degradation processes and related driving forces, multiscale/multi-resolution methods, computational hierarchical and concurrent methods for coupled component and material responses, novel methods for notch root analysis, fracture mechanics, damage mechanics, crack growth kinetics, life prediction and durability, and prediction of stochastic fatigue behavior reflecting microstructure and service conditions) Models for early stages of fatigue crack formation and growth that explicitly consider microstructure and relevant materials science aspects Understanding the influence or manufacturing and processing route on fatigue degradation, and embedding this understanding in more predictive schemes for mitigation and design against fatigue Prognosis and damage state awareness (including sensors, monitoring, methodology, interactive control, accelerated methods, data interpretation) Applications of technologies associated with fatigue and their implications for structural integrity and reliability. This includes issues related to design, operation and maintenance, i.e., life cycle engineering Smart materials and structures that can sense and mitigate fatigue degradation Fatigue of devices and structures at small scales, including effects of process route and surfaces/interfaces.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信