{"title":"使用轻量级方法从卫星图像中探测山体滑坡","authors":"Jinchi Dai, Xiaoai Dai, Renyuan Zhang, JiaXin Ma, Wenyu Li, Heng Lu, Weile Li, Shuneng Liang, Tangrui Dai, Yunfeng Shan, Donghui Zhang, Lei Zhao","doi":"10.1016/j.jag.2024.104303","DOIUrl":null,"url":null,"abstract":"Accurate, rapid, and automated landslide detection is crucial for early warning, emergency management, and landslide mechanism analysis. Increasingly general-purpose detection models are being deployed for these complex and dynamic tasks involving features that are difficult to characterize. However, these models are computationally expensive and memory-hungry, while the accuracy and detection efficiency remain wanting. To address the above problems, this paper proposes an end-to-end model with high-precision and lightweight design for integrated landslide detection and segmentation. Here, we customized the backbone utilizing the advanced Efficient MOdel (EMO), and further used the linear cheap operation from GhostNet to reduce computational complexity. As a result, the total parameters of our models were reduced by up to 48.13%, compared to the baseline. Building on this, we employed a dynamic detection head with multiple attention mechanisms, and proposed a lightweight attention enhancement module for strengthened multi-scale feature extraction and fusion. The results demonstrate that our model outperforms the baseline on all metrics, achieving an outstanding F1 score of 96.75%.","PeriodicalId":50341,"journal":{"name":"International Journal of Applied Earth Observation and Geoinformation","volume":"63 1","pages":""},"PeriodicalIF":7.5000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using lightweight method to detect landslide from satellite imagery\",\"authors\":\"Jinchi Dai, Xiaoai Dai, Renyuan Zhang, JiaXin Ma, Wenyu Li, Heng Lu, Weile Li, Shuneng Liang, Tangrui Dai, Yunfeng Shan, Donghui Zhang, Lei Zhao\",\"doi\":\"10.1016/j.jag.2024.104303\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate, rapid, and automated landslide detection is crucial for early warning, emergency management, and landslide mechanism analysis. Increasingly general-purpose detection models are being deployed for these complex and dynamic tasks involving features that are difficult to characterize. However, these models are computationally expensive and memory-hungry, while the accuracy and detection efficiency remain wanting. To address the above problems, this paper proposes an end-to-end model with high-precision and lightweight design for integrated landslide detection and segmentation. Here, we customized the backbone utilizing the advanced Efficient MOdel (EMO), and further used the linear cheap operation from GhostNet to reduce computational complexity. As a result, the total parameters of our models were reduced by up to 48.13%, compared to the baseline. Building on this, we employed a dynamic detection head with multiple attention mechanisms, and proposed a lightweight attention enhancement module for strengthened multi-scale feature extraction and fusion. The results demonstrate that our model outperforms the baseline on all metrics, achieving an outstanding F1 score of 96.75%.\",\"PeriodicalId\":50341,\"journal\":{\"name\":\"International Journal of Applied Earth Observation and Geoinformation\",\"volume\":\"63 1\",\"pages\":\"\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Earth Observation and Geoinformation\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jag.2024.104303\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Earth Observation and Geoinformation","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1016/j.jag.2024.104303","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
Using lightweight method to detect landslide from satellite imagery
Accurate, rapid, and automated landslide detection is crucial for early warning, emergency management, and landslide mechanism analysis. Increasingly general-purpose detection models are being deployed for these complex and dynamic tasks involving features that are difficult to characterize. However, these models are computationally expensive and memory-hungry, while the accuracy and detection efficiency remain wanting. To address the above problems, this paper proposes an end-to-end model with high-precision and lightweight design for integrated landslide detection and segmentation. Here, we customized the backbone utilizing the advanced Efficient MOdel (EMO), and further used the linear cheap operation from GhostNet to reduce computational complexity. As a result, the total parameters of our models were reduced by up to 48.13%, compared to the baseline. Building on this, we employed a dynamic detection head with multiple attention mechanisms, and proposed a lightweight attention enhancement module for strengthened multi-scale feature extraction and fusion. The results demonstrate that our model outperforms the baseline on all metrics, achieving an outstanding F1 score of 96.75%.
期刊介绍:
The International Journal of Applied Earth Observation and Geoinformation publishes original papers that utilize earth observation data for natural resource and environmental inventory and management. These data primarily originate from remote sensing platforms, including satellites and aircraft, supplemented by surface and subsurface measurements. Addressing natural resources such as forests, agricultural land, soils, and water, as well as environmental concerns like biodiversity, land degradation, and hazards, the journal explores conceptual and data-driven approaches. It covers geoinformation themes like capturing, databasing, visualization, interpretation, data quality, and spatial uncertainty.