IF 7.5 1区 地球科学 Q1 Earth and Planetary Sciences
Changda Liu, Huan Xie, Qi Xu, Jie Li, Yuan Sun, Min Ji, Xiaohua Tong
{"title":"Diffuse attenuation coefficient and bathymetry retrieval in shallow water environments by integrating satellite laser altimetry with optical remote sensing","authors":"Changda Liu, Huan Xie, Qi Xu, Jie Li, Yuan Sun, Min Ji, Xiaohua Tong","doi":"10.1016/j.jag.2024.104318","DOIUrl":null,"url":null,"abstract":"Shallow water environmental information is crucial for the study of marine ecosystems and human activities. There have been numerous satellite remote sensing studies focused on this area. However, accurate information acquisition from remote sensing data remains difficult in this region due to the complexity of the environment and the coupling between benthic reflectance and water column scattering. In this study, we developed a method to retrieve the diffuse attenuation coefficient (<mml:math altimg=\"si2.svg\"><mml:mrow><mml:msub><mml:mi mathvariant=\"normal\">K</mml:mi><mml:mi mathvariant=\"normal\">d</mml:mi></mml:msub></mml:mrow></mml:math>), seafloor classification, and bathymetric maps by combining satellite laser altimetry and optical remote sensing imagery in shallow water areas. Firstly, the relationships between remote sensing reflectance (<mml:math altimg=\"si3.svg\"><mml:mrow><mml:msub><mml:mi mathvariant=\"normal\">R</mml:mi><mml:mrow><mml:mi mathvariant=\"normal\">r</mml:mi><mml:mi mathvariant=\"normal\">s</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math>), water depth, and <mml:math altimg=\"si2.svg\"><mml:mrow><mml:msub><mml:mi mathvariant=\"normal\">K</mml:mi><mml:mi mathvariant=\"normal\">d</mml:mi></mml:msub></mml:mrow></mml:math> were established based on radiative transfer theory. This method allows for the retrieval of <mml:math altimg=\"si2.svg\"><mml:mrow><mml:msub><mml:mi mathvariant=\"normal\">K</mml:mi><mml:mi mathvariant=\"normal\">d</mml:mi></mml:msub></mml:mrow></mml:math> in shallow water regions, overcoming the limitations present in previous studies. Secondly, we eliminated the water column attenuation and obtained the bottom reflectance index (BRI). The BRI allowed us to determine the bottom reflectance and classify the seafloor using the Gaussian mixture model clustering method. This approach can effectively reduce the error in bathymetric inversion caused by variations in bottom reflectance. Finally, we developed a neural network model for bathymetric inversion. The model inputs consist of <mml:math altimg=\"si3.svg\"><mml:mrow><mml:msub><mml:mi mathvariant=\"normal\">R</mml:mi><mml:mrow><mml:mi mathvariant=\"normal\">r</mml:mi><mml:mi mathvariant=\"normal\">s</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math> data and spectral shape data containing physical constraint information, aiming to achieve a robust estimation performance. We conducted the study in two experimental areas (the Bimini Islands and the Yongle Atoll) and compared the results with validation data to evaluate the algorithm performance. The results indicated an agreement between the estimated <mml:math altimg=\"si2.svg\"><mml:mrow><mml:msub><mml:mi mathvariant=\"normal\">K</mml:mi><mml:mi mathvariant=\"normal\">d</mml:mi></mml:msub></mml:mrow></mml:math> and the validation data (inferred <mml:math altimg=\"si2.svg\"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant=\"normal\">K</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant=\"normal\">d</mml:mi></mml:mrow></mml:msub><mml:mn>490</mml:mn></mml:mrow></mml:math> values of 0.062<ce:hsp sp=\"0.25\"></ce:hsp>m<ce:sup loc=\"post\">−1</ce:sup> and 0.058<ce:hsp sp=\"0.25\"></ce:hsp>m<ce:sup loc=\"post\">−1</ce:sup>, compared to a validation data range of 0.055–0.087<ce:hsp sp=\"0.25\"></ce:hsp>m<ce:sup loc=\"post\">−1</ce:sup> and 0.059–0.070<ce:hsp sp=\"0.25\"></ce:hsp>m<ce:sup loc=\"post\">−1</ce:sup>, respectively). In addition, the seafloor classification accuracy was 86.74 % for the Yongle Atoll area. Finally, the neural network model accurately predicted the bathymetry in the two regions. The accuracy of the bathymetric maps improved significantly with seafloor classification, as indicated by reductions in root mean square error (RMSE) of 0.12 m and 0.15 m, and in mean absolute percentage error (MAPE) by 2.24 % and 5.87 %, respectively. Overall, the proposed method can be used to effectively decouple benthic and water column signals and accurately obtain <mml:math altimg=\"si2.svg\"><mml:mrow><mml:msub><mml:mi mathvariant=\"normal\">K</mml:mi><mml:mi mathvariant=\"normal\">d</mml:mi></mml:msub></mml:mrow></mml:math>, bottom reflectance, and bathymetric information for shallow water environments, providing unprecedented information for assessing and monitoring ecosystems and facilitating further research.","PeriodicalId":50341,"journal":{"name":"International Journal of Applied Earth Observation and Geoinformation","volume":"16 1","pages":""},"PeriodicalIF":7.5000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Earth Observation and Geoinformation","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1016/j.jag.2024.104318","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0

摘要

浅水环境信息对于研究海洋生态系统和人类活动至关重要。许多卫星遥感研究都集中在这一区域。然而,由于环境的复杂性以及海底反射率和水柱散射之间的耦合性,在这一区域从遥感数据中准确获取信息仍然十分困难。在这项研究中,我们开发了一种方法,通过结合卫星激光测高和光学遥感图像,获取浅水区的漫反射衰减系数(Kd)、海底分类和水深图。首先,根据辐射传递理论建立了遥感反射率(Rrs)、水深和 Kd 之间的关系。这种方法克服了以往研究中存在的局限性,可用于检索浅水区域的 Kd。其次,我们消除了水体衰减,获得了底部反射率指数(BRI)。利用海底反射率指数,我们可以确定海底反射率,并利用高斯混合模型聚类方法对海底进行分类。这种方法可以有效减少因海底反射率变化而造成的测深反演误差。最后,我们建立了一个用于水深反演的神经网络模型。模型输入包括 Rrs 数据和包含物理约束信息的光谱形状数据,旨在实现稳健的估计性能。我们在两个实验区(比米尼岛和永乐环礁)进行了研究,并将结果与验证数据进行比较,以评估算法性能。结果表明,估计的 Kd 与验证数据一致(推断的 Kd490 值分别为 0.062m-1 和 0.058m-1,而验证数据范围分别为 0.055-0.087m-1 和 0.059-0.070m-1)。此外,永乐环礁区域的海底分类准确率为 86.74%。最后,神经网络模型准确预测了两个区域的水深。海底分类后,测深图的精度显著提高,均方根误差(RMSE)分别降低了 0.12 米和 0.15 米,平均绝对百分比误差(MAPE)分别降低了 2.24% 和 5.87%。总之,所提出的方法可用于有效解耦底栖生物信号和水体信号,并准确获取浅水环境的 Kd、底部反射率和测深信息,为评估和监测生态系统提供前所未有的信息,并促进进一步的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Diffuse attenuation coefficient and bathymetry retrieval in shallow water environments by integrating satellite laser altimetry with optical remote sensing
Shallow water environmental information is crucial for the study of marine ecosystems and human activities. There have been numerous satellite remote sensing studies focused on this area. However, accurate information acquisition from remote sensing data remains difficult in this region due to the complexity of the environment and the coupling between benthic reflectance and water column scattering. In this study, we developed a method to retrieve the diffuse attenuation coefficient (Kd), seafloor classification, and bathymetric maps by combining satellite laser altimetry and optical remote sensing imagery in shallow water areas. Firstly, the relationships between remote sensing reflectance (Rrs), water depth, and Kd were established based on radiative transfer theory. This method allows for the retrieval of Kd in shallow water regions, overcoming the limitations present in previous studies. Secondly, we eliminated the water column attenuation and obtained the bottom reflectance index (BRI). The BRI allowed us to determine the bottom reflectance and classify the seafloor using the Gaussian mixture model clustering method. This approach can effectively reduce the error in bathymetric inversion caused by variations in bottom reflectance. Finally, we developed a neural network model for bathymetric inversion. The model inputs consist of Rrs data and spectral shape data containing physical constraint information, aiming to achieve a robust estimation performance. We conducted the study in two experimental areas (the Bimini Islands and the Yongle Atoll) and compared the results with validation data to evaluate the algorithm performance. The results indicated an agreement between the estimated Kd and the validation data (inferred Kd490 values of 0.062m−1 and 0.058m−1, compared to a validation data range of 0.055–0.087m−1 and 0.059–0.070m−1, respectively). In addition, the seafloor classification accuracy was 86.74 % for the Yongle Atoll area. Finally, the neural network model accurately predicted the bathymetry in the two regions. The accuracy of the bathymetric maps improved significantly with seafloor classification, as indicated by reductions in root mean square error (RMSE) of 0.12 m and 0.15 m, and in mean absolute percentage error (MAPE) by 2.24 % and 5.87 %, respectively. Overall, the proposed method can be used to effectively decouple benthic and water column signals and accurately obtain Kd, bottom reflectance, and bathymetric information for shallow water environments, providing unprecedented information for assessing and monitoring ecosystems and facilitating further research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.20
自引率
8.00%
发文量
49
审稿时长
7.2 months
期刊介绍: The International Journal of Applied Earth Observation and Geoinformation publishes original papers that utilize earth observation data for natural resource and environmental inventory and management. These data primarily originate from remote sensing platforms, including satellites and aircraft, supplemented by surface and subsurface measurements. Addressing natural resources such as forests, agricultural land, soils, and water, as well as environmental concerns like biodiversity, land degradation, and hazards, the journal explores conceptual and data-driven approaches. It covers geoinformation themes like capturing, databasing, visualization, interpretation, data quality, and spatial uncertainty.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信