Chenqi Huang, Lingxiao Wang, Lin Zhao, Shibo Liu, Defu Zou, Guangyue Liu, Guojie Hu, Erji Du, Yao Xiao, Chong Wang, Yuxin Zhang, Yuanwei Wang, Yu Zhang, Zhibin Li
{"title":"C 波段 Sentinel-1 InSAR 用于监测北方南部森林地表变形的潜力:根河流域调查","authors":"Chenqi Huang, Lingxiao Wang, Lin Zhao, Shibo Liu, Defu Zou, Guangyue Liu, Guojie Hu, Erji Du, Yao Xiao, Chong Wang, Yuxin Zhang, Yuanwei Wang, Yu Zhang, Zhibin Li","doi":"10.1016/j.jag.2024.104302","DOIUrl":null,"url":null,"abstract":"The boreal forest surrounds the Arctic region and is the most extensive ecosystem on Earth; one-third of its soil is influenced by permafrost and accompanying wetlands. Interferometric Synthetic Aperture Radar (InSAR) technology has been widely utilized to monitor ground surface deformation in Arctic tundra and alpine grassland permafrost environments; however, its application in boreal forest areas is limited due to dense canopy cover and severe interferometric decorrelation. This study investigates the application of C-band InSAR to ground surface deformation monitoring in a southern boreal forest environment at Genhe River watershed in the northern part of the Greater Khingan Mountains, Northeast China. The analysis revealed that freezing-season interferograms have higher interferometric qualities and are more suitable for deformation monitoring. An InSAR pair correction and stacking algorithm was developed for retrieving extensive freezing-season deformation which could maximize the use of low-quality InSAR pairs, and reduce the effects of the snow depth phase and atmospheric distortions. The retrieved multiannual freezing-season deformation ranged from –32.8 mm to 129.1 mm. The uplift regions clearly indicate the extent of low-lying wetlands, which are influenced by frost heave caused by freezing soil water. Additionally, the “subsidence” areas correspond to farmland and evergreen coniferous forest regions in the study area, where liquid water content is higher than in other land cover types, thus resulting in a longer optical path for the radar signal. This study presents the first systematic analysis of applying C-band InSAR to ground surface deformation monitoring in the southern boreal forest environment. The retrieved seasonal deformation and deformation processes have a high potential for identifying wetlands, differentiating between forest types, and providing valuable insights into the hydrothermal conditions and dynamics of the boreal ecosystem.","PeriodicalId":50341,"journal":{"name":"International Journal of Applied Earth Observation and Geoinformation","volume":"22 1","pages":""},"PeriodicalIF":7.5000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Potential of C-band Sentinel-1 InSAR for ground surface deformation monitoring in the southern boreal forest: An investigation in the Genhe River basin\",\"authors\":\"Chenqi Huang, Lingxiao Wang, Lin Zhao, Shibo Liu, Defu Zou, Guangyue Liu, Guojie Hu, Erji Du, Yao Xiao, Chong Wang, Yuxin Zhang, Yuanwei Wang, Yu Zhang, Zhibin Li\",\"doi\":\"10.1016/j.jag.2024.104302\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The boreal forest surrounds the Arctic region and is the most extensive ecosystem on Earth; one-third of its soil is influenced by permafrost and accompanying wetlands. Interferometric Synthetic Aperture Radar (InSAR) technology has been widely utilized to monitor ground surface deformation in Arctic tundra and alpine grassland permafrost environments; however, its application in boreal forest areas is limited due to dense canopy cover and severe interferometric decorrelation. This study investigates the application of C-band InSAR to ground surface deformation monitoring in a southern boreal forest environment at Genhe River watershed in the northern part of the Greater Khingan Mountains, Northeast China. The analysis revealed that freezing-season interferograms have higher interferometric qualities and are more suitable for deformation monitoring. An InSAR pair correction and stacking algorithm was developed for retrieving extensive freezing-season deformation which could maximize the use of low-quality InSAR pairs, and reduce the effects of the snow depth phase and atmospheric distortions. The retrieved multiannual freezing-season deformation ranged from –32.8 mm to 129.1 mm. The uplift regions clearly indicate the extent of low-lying wetlands, which are influenced by frost heave caused by freezing soil water. Additionally, the “subsidence” areas correspond to farmland and evergreen coniferous forest regions in the study area, where liquid water content is higher than in other land cover types, thus resulting in a longer optical path for the radar signal. This study presents the first systematic analysis of applying C-band InSAR to ground surface deformation monitoring in the southern boreal forest environment. The retrieved seasonal deformation and deformation processes have a high potential for identifying wetlands, differentiating between forest types, and providing valuable insights into the hydrothermal conditions and dynamics of the boreal ecosystem.\",\"PeriodicalId\":50341,\"journal\":{\"name\":\"International Journal of Applied Earth Observation and Geoinformation\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Earth Observation and Geoinformation\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jag.2024.104302\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Earth Observation and Geoinformation","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1016/j.jag.2024.104302","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0
摘要
北方森林环绕着北极地区,是地球上最广阔的生态系统;其三分之一的土壤受到永冻土和伴生湿地的影响。干涉合成孔径雷达(InSAR)技术已被广泛用于监测北极苔原和高山草地永久冻土环境中的地表变形;然而,由于茂密的树冠覆盖和严重的干涉相关性,该技术在北方森林地区的应用受到了限制。本研究考察了 C 波段 InSAR 在中国东北大兴安岭北部根河流域南寒带森林环境地表形变监测中的应用。分析表明,冰冻季节的干涉图具有更高的干涉测量质量,更适合用于形变监测。该算法可最大限度地利用低质量的 InSAR 对,并减少雪深相位和大气畸变的影响。检索到的多年度冰冻季形变范围为-32.8 毫米至 129.1 毫米。隆起区域清楚地表明了低洼湿地的范围,这些湿地受到土壤水冻结造成的冻浪的影响。此外,"下沉 "区域与研究区域的农田和常绿针叶林区域相对应,这些区域的液态水含量高于其他土地覆被类型,因此雷达信号的光路更长。本研究首次系统分析了如何将 C 波段 InSAR 应用于南部北方森林环境的地表形变监测。检索到的季节性形变和形变过程极有可能用于识别湿地、区分森林类型,并为了解北方生态系统的水热条件和动态提供有价值的见解。
Potential of C-band Sentinel-1 InSAR for ground surface deformation monitoring in the southern boreal forest: An investigation in the Genhe River basin
The boreal forest surrounds the Arctic region and is the most extensive ecosystem on Earth; one-third of its soil is influenced by permafrost and accompanying wetlands. Interferometric Synthetic Aperture Radar (InSAR) technology has been widely utilized to monitor ground surface deformation in Arctic tundra and alpine grassland permafrost environments; however, its application in boreal forest areas is limited due to dense canopy cover and severe interferometric decorrelation. This study investigates the application of C-band InSAR to ground surface deformation monitoring in a southern boreal forest environment at Genhe River watershed in the northern part of the Greater Khingan Mountains, Northeast China. The analysis revealed that freezing-season interferograms have higher interferometric qualities and are more suitable for deformation monitoring. An InSAR pair correction and stacking algorithm was developed for retrieving extensive freezing-season deformation which could maximize the use of low-quality InSAR pairs, and reduce the effects of the snow depth phase and atmospheric distortions. The retrieved multiannual freezing-season deformation ranged from –32.8 mm to 129.1 mm. The uplift regions clearly indicate the extent of low-lying wetlands, which are influenced by frost heave caused by freezing soil water. Additionally, the “subsidence” areas correspond to farmland and evergreen coniferous forest regions in the study area, where liquid water content is higher than in other land cover types, thus resulting in a longer optical path for the radar signal. This study presents the first systematic analysis of applying C-band InSAR to ground surface deformation monitoring in the southern boreal forest environment. The retrieved seasonal deformation and deformation processes have a high potential for identifying wetlands, differentiating between forest types, and providing valuable insights into the hydrothermal conditions and dynamics of the boreal ecosystem.
期刊介绍:
The International Journal of Applied Earth Observation and Geoinformation publishes original papers that utilize earth observation data for natural resource and environmental inventory and management. These data primarily originate from remote sensing platforms, including satellites and aircraft, supplemented by surface and subsurface measurements. Addressing natural resources such as forests, agricultural land, soils, and water, as well as environmental concerns like biodiversity, land degradation, and hazards, the journal explores conceptual and data-driven approaches. It covers geoinformation themes like capturing, databasing, visualization, interpretation, data quality, and spatial uncertainty.