Chang Xu , Junqi Ding , Bo Wang , Yan Qiao , Lingxian Zhang , Yiding Zhang
{"title":"基于多模式信息的作物电子病历优化农业处方推荐系统","authors":"Chang Xu , Junqi Ding , Bo Wang , Yan Qiao , Lingxian Zhang , Yiding Zhang","doi":"10.1016/j.jii.2024.100748","DOIUrl":null,"url":null,"abstract":"<div><div>Multimodal Crop Electronic Medical Records (CEMRs) contain complex information, including disease symptoms, crop conditions, environmental factors, and diagnostic prescriptions, making them crucial for intelligent prescription recommendations. However, effectively integrating complementary features from different CEMRs modalities has remained a key challenge. Current CEMRs research primarily focuses on unimodal data, and simplistic approaches like feature concatenation struggle to achieve in-depth cross-modal interactions. This study introduces a novel agricultural prescription recommendation model (named AgriPR) based on cross-modal multi-layer feature fusion. The model initially employs task-adaptive pre-trained BERT (TA-BERT) and ConvNeXt to encode text and image unimodal features respectively. Subsequently, it utilizes Bilinear Attention Networks (BAN) to bilinear features and combines them with bimodal encoding features for a multilayer fusion representation. Finally, a dual-layer Transformer performs re-interaction to emphasize key fused features, resulting in precise prescription recommendations. To evaluate AgriPR, we constructed a real CEMRs dataset containing 13 prescription categories from Beijing Plant Clinic. Experimental results demonstrate that AgriPR achieves outstanding performance, with a classification accuracy of 98.88 %, surpassing state-of-the-art models. Furthermore, the study compares and analyzes 8 encoder combinations, 6 feature fusion strategies, and 6 network layer configurations, highlighting the model's design advantages. Lastly, the model's adaptability was also tested with incomplete modality inputs (text-only or image-only) and missing information inputs (e.g., crop, environment, symptoms). The findings confirm AgriPR's practical applicability, providing a high-performance solution for agricultural management systems.</div></div>","PeriodicalId":55975,"journal":{"name":"Journal of Industrial Information Integration","volume":"43 ","pages":"Article 100748"},"PeriodicalIF":10.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multimodal-information-based optimized agricultural prescription recommendation system of crop electronic medical records\",\"authors\":\"Chang Xu , Junqi Ding , Bo Wang , Yan Qiao , Lingxian Zhang , Yiding Zhang\",\"doi\":\"10.1016/j.jii.2024.100748\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Multimodal Crop Electronic Medical Records (CEMRs) contain complex information, including disease symptoms, crop conditions, environmental factors, and diagnostic prescriptions, making them crucial for intelligent prescription recommendations. However, effectively integrating complementary features from different CEMRs modalities has remained a key challenge. Current CEMRs research primarily focuses on unimodal data, and simplistic approaches like feature concatenation struggle to achieve in-depth cross-modal interactions. This study introduces a novel agricultural prescription recommendation model (named AgriPR) based on cross-modal multi-layer feature fusion. The model initially employs task-adaptive pre-trained BERT (TA-BERT) and ConvNeXt to encode text and image unimodal features respectively. Subsequently, it utilizes Bilinear Attention Networks (BAN) to bilinear features and combines them with bimodal encoding features for a multilayer fusion representation. Finally, a dual-layer Transformer performs re-interaction to emphasize key fused features, resulting in precise prescription recommendations. To evaluate AgriPR, we constructed a real CEMRs dataset containing 13 prescription categories from Beijing Plant Clinic. Experimental results demonstrate that AgriPR achieves outstanding performance, with a classification accuracy of 98.88 %, surpassing state-of-the-art models. Furthermore, the study compares and analyzes 8 encoder combinations, 6 feature fusion strategies, and 6 network layer configurations, highlighting the model's design advantages. Lastly, the model's adaptability was also tested with incomplete modality inputs (text-only or image-only) and missing information inputs (e.g., crop, environment, symptoms). The findings confirm AgriPR's practical applicability, providing a high-performance solution for agricultural management systems.</div></div>\",\"PeriodicalId\":55975,\"journal\":{\"name\":\"Journal of Industrial Information Integration\",\"volume\":\"43 \",\"pages\":\"Article 100748\"},\"PeriodicalIF\":10.4000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Industrial Information Integration\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452414X24001912\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial Information Integration","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452414X24001912","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Multimodal-information-based optimized agricultural prescription recommendation system of crop electronic medical records
Multimodal Crop Electronic Medical Records (CEMRs) contain complex information, including disease symptoms, crop conditions, environmental factors, and diagnostic prescriptions, making them crucial for intelligent prescription recommendations. However, effectively integrating complementary features from different CEMRs modalities has remained a key challenge. Current CEMRs research primarily focuses on unimodal data, and simplistic approaches like feature concatenation struggle to achieve in-depth cross-modal interactions. This study introduces a novel agricultural prescription recommendation model (named AgriPR) based on cross-modal multi-layer feature fusion. The model initially employs task-adaptive pre-trained BERT (TA-BERT) and ConvNeXt to encode text and image unimodal features respectively. Subsequently, it utilizes Bilinear Attention Networks (BAN) to bilinear features and combines them with bimodal encoding features for a multilayer fusion representation. Finally, a dual-layer Transformer performs re-interaction to emphasize key fused features, resulting in precise prescription recommendations. To evaluate AgriPR, we constructed a real CEMRs dataset containing 13 prescription categories from Beijing Plant Clinic. Experimental results demonstrate that AgriPR achieves outstanding performance, with a classification accuracy of 98.88 %, surpassing state-of-the-art models. Furthermore, the study compares and analyzes 8 encoder combinations, 6 feature fusion strategies, and 6 network layer configurations, highlighting the model's design advantages. Lastly, the model's adaptability was also tested with incomplete modality inputs (text-only or image-only) and missing information inputs (e.g., crop, environment, symptoms). The findings confirm AgriPR's practical applicability, providing a high-performance solution for agricultural management systems.
期刊介绍:
The Journal of Industrial Information Integration focuses on the industry's transition towards industrial integration and informatization, covering not only hardware and software but also information integration. It serves as a platform for promoting advances in industrial information integration, addressing challenges, issues, and solutions in an interdisciplinary forum for researchers, practitioners, and policy makers.
The Journal of Industrial Information Integration welcomes papers on foundational, technical, and practical aspects of industrial information integration, emphasizing the complex and cross-disciplinary topics that arise in industrial integration. Techniques from mathematical science, computer science, computer engineering, electrical and electronic engineering, manufacturing engineering, and engineering management are crucial in this context.