IF 18.8 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Nik Dennler, André van Schaik, Michael Schmuker
{"title":"Limitations in odour recognition and generalization in a neuromorphic olfactory circuit","authors":"Nik Dennler, André van Schaik, Michael Schmuker","doi":"10.1038/s42256-024-00952-1","DOIUrl":null,"url":null,"abstract":"","PeriodicalId":48533,"journal":{"name":"Nature Machine Intelligence","volume":"6 12","pages":"1451-1453"},"PeriodicalIF":18.8000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Machine Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.nature.com/articles/s42256-024-00952-1","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

神经形态计算是目前少数几种有可能大幅降低机器学习和人工智能功耗的方法之一,它从生物系统和电路中汲取了大量灵感。在他们的研究中,伊玛姆和克莱兰德1 提出了一种神经形态气味学习算法,该算法的灵感来自哺乳动物的嗅球电路,他们评估了该算法在 "快速在线学习和识别 "以及 "超越经验的广泛泛化 "气体气味和无味气体(简而言之,"气体")方面的性能,使用了一组不同气味呈现的气体传感器记录,并用脉冲噪声对其进行了破坏。我们复制了该研究的部分内容,并发现了其中的局限性:(1) 所使用的数据集存在传感器漂移和非随机测量协议的问题,因此在气味识别基准方面的作用有限;(2) 该模型在重复呈现相同气体时的泛化能力受到限制。因此,除了还原先前学习的数据样本之外,该模型的验证还有待证明,特别是其与所赋予的鲁棒性和超越经验的广泛泛化能力的一致性,以及其对现实气味识别任务的适用性。除了数据集的局限性之外,我们还发现该模型对同一刺激的不同记录进行泛化的能力受到了限制。泛化是任何模式识别系统的重要特性6。作者令人信服地表明,该模型可以恢复被脉冲噪声破坏的输入模式。不过,在大多数情况下,作者都是在用于训练的相同样本上进行识别测试,用噪声遮盖了样本的 60%。每个训练样本的 40% 在相应的测试样本中保持不变。由于在训练和测试中使用了重叠的数据部分,因此无法保持稳健的泛化评估所需的统计独立性。真正的气味识别和信号恢复系统很少会两次遇到完全相同的刺激,一次是干净的刺激,一次是损坏的刺激。因此,评估模型从不同记录中识别和还原模式的能力对于判断其相关性至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Limitations in odour recognition and generalization in a neuromorphic olfactory circuit

Limitations in odour recognition and generalization in a neuromorphic olfactory circuit

Limitations in odour recognition and generalization in a neuromorphic olfactory circuit
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
36.90
自引率
2.10%
发文量
127
期刊介绍: Nature Machine Intelligence is a distinguished publication that presents original research and reviews on various topics in machine learning, robotics, and AI. Our focus extends beyond these fields, exploring their profound impact on other scientific disciplines, as well as societal and industrial aspects. We recognize limitless possibilities wherein machine intelligence can augment human capabilities and knowledge in domains like scientific exploration, healthcare, medical diagnostics, and the creation of safe and sustainable cities, transportation, and agriculture. Simultaneously, we acknowledge the emergence of ethical, social, and legal concerns due to the rapid pace of advancements. To foster interdisciplinary discussions on these far-reaching implications, Nature Machine Intelligence serves as a platform for dialogue facilitated through Comments, News Features, News & Views articles, and Correspondence. Our goal is to encourage a comprehensive examination of these subjects. Similar to all Nature-branded journals, Nature Machine Intelligence operates under the guidance of a team of skilled editors. We adhere to a fair and rigorous peer-review process, ensuring high standards of copy-editing and production, swift publication, and editorial independence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信