驯化木薯(Manihot esculenta)中有性生殖基因侵蚀的进化特征。

IF 2.1 3区 生物学 Q3 GENETICS & HEREDITY
Evan M Long, Michelle C Stitzer, Brandon Monier, Aimee J Schulz, Maria Cinta Romay, Kelly R Robbins, Edward S Buckler
{"title":"驯化木薯(Manihot esculenta)中有性生殖基因侵蚀的进化特征。","authors":"Evan M Long, Michelle C Stitzer, Brandon Monier, Aimee J Schulz, Maria Cinta Romay, Kelly R Robbins, Edward S Buckler","doi":"10.1093/g3journal/jkae282","DOIUrl":null,"url":null,"abstract":"<p><p>Centuries of clonal propagation in cassava (Manihot esculenta) have reduced sexual recombination, leading to the accumulation of deleterious mutations. This has resulted in both inbreeding depression affecting yield and a significant decrease in reproductive performance, creating hurdles for contemporary breeding programs. Cassava is a member of the Euphorbiaceae family, including notable species such as rubber tree (Hevea brasiliensis) and poinsettia (Euphorbia pulcherrima). Expanding upon preliminary draft genomes, we annotated 7 long-read genome assemblies and aligned a total of 52 genomes, to analyze selection across the genome and the phylogeny. Through this comparative genomic approach, we identified 48 genes under relaxed selection in cassava. Notably, we discovered an overrepresentation of floral expressed genes, especially focused at 6 pollen-related genes. Our results indicate that domestication and a transition to clonal propagation have reduced selection pressures on sexually reproductive functions in cassava leading to an accumulation of mutations in pollen-related genes. This relaxed selection and the genome-wide deleterious mutations responsible for inbreeding depression are potential targets for improving cassava breeding, where the generation of new varieties relies on recombining favorable alleles through sexual reproduction.</p>","PeriodicalId":12468,"journal":{"name":"G3: Genes|Genomes|Genetics","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11797036/pdf/","citationCount":"0","resultStr":"{\"title\":\"Evolutionary signatures of the erosion of sexual reproduction genes in domesticated cassava (Manihot esculenta).\",\"authors\":\"Evan M Long, Michelle C Stitzer, Brandon Monier, Aimee J Schulz, Maria Cinta Romay, Kelly R Robbins, Edward S Buckler\",\"doi\":\"10.1093/g3journal/jkae282\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Centuries of clonal propagation in cassava (Manihot esculenta) have reduced sexual recombination, leading to the accumulation of deleterious mutations. This has resulted in both inbreeding depression affecting yield and a significant decrease in reproductive performance, creating hurdles for contemporary breeding programs. Cassava is a member of the Euphorbiaceae family, including notable species such as rubber tree (Hevea brasiliensis) and poinsettia (Euphorbia pulcherrima). Expanding upon preliminary draft genomes, we annotated 7 long-read genome assemblies and aligned a total of 52 genomes, to analyze selection across the genome and the phylogeny. Through this comparative genomic approach, we identified 48 genes under relaxed selection in cassava. Notably, we discovered an overrepresentation of floral expressed genes, especially focused at 6 pollen-related genes. Our results indicate that domestication and a transition to clonal propagation have reduced selection pressures on sexually reproductive functions in cassava leading to an accumulation of mutations in pollen-related genes. This relaxed selection and the genome-wide deleterious mutations responsible for inbreeding depression are potential targets for improving cassava breeding, where the generation of new varieties relies on recombining favorable alleles through sexual reproduction.</p>\",\"PeriodicalId\":12468,\"journal\":{\"name\":\"G3: Genes|Genomes|Genetics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11797036/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"G3: Genes|Genomes|Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/g3journal/jkae282\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"G3: Genes|Genomes|Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/g3journal/jkae282","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

木薯(Manihot esculenta)几个世纪的克隆繁殖减少了性重组,导致有害突变的积累。这导致近交抑制影响产量和繁殖性能显著下降,为当代育种计划制造障碍。木薯是大戟科的一员,包括橡胶树(Hevea brasiliensis)和一品红(Euphorbia pulcherrima)。在初步基因组草案的基础上,我们对7个长读基因组片段进行了注释,并对52个基因组进行了比对,以分析基因组间的选择和系统发育。通过比较基因组学方法,我们在木薯中鉴定了48个宽松选择下的基因。值得注意的是,我们发现了花表达基因的过度代表,特别是集中在六个花粉相关基因。我们的研究结果表明,驯化和向无性系繁殖的过渡减少了木薯有性生殖功能的选择压力,导致花粉相关基因突变的积累。这种宽松的选择和导致近交抑制的全基因组有害突变是改善木薯育种的潜在目标,其中新品种的产生依赖于通过有性繁殖对有利等位基因进行重组。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evolutionary signatures of the erosion of sexual reproduction genes in domesticated cassava (Manihot esculenta).

Centuries of clonal propagation in cassava (Manihot esculenta) have reduced sexual recombination, leading to the accumulation of deleterious mutations. This has resulted in both inbreeding depression affecting yield and a significant decrease in reproductive performance, creating hurdles for contemporary breeding programs. Cassava is a member of the Euphorbiaceae family, including notable species such as rubber tree (Hevea brasiliensis) and poinsettia (Euphorbia pulcherrima). Expanding upon preliminary draft genomes, we annotated 7 long-read genome assemblies and aligned a total of 52 genomes, to analyze selection across the genome and the phylogeny. Through this comparative genomic approach, we identified 48 genes under relaxed selection in cassava. Notably, we discovered an overrepresentation of floral expressed genes, especially focused at 6 pollen-related genes. Our results indicate that domestication and a transition to clonal propagation have reduced selection pressures on sexually reproductive functions in cassava leading to an accumulation of mutations in pollen-related genes. This relaxed selection and the genome-wide deleterious mutations responsible for inbreeding depression are potential targets for improving cassava breeding, where the generation of new varieties relies on recombining favorable alleles through sexual reproduction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
G3: Genes|Genomes|Genetics
G3: Genes|Genomes|Genetics GENETICS & HEREDITY-
CiteScore
5.10
自引率
3.80%
发文量
305
审稿时长
3-8 weeks
期刊介绍: G3: Genes, Genomes, Genetics provides a forum for the publication of high‐quality foundational research, particularly research that generates useful genetic and genomic information such as genome maps, single gene studies, genome‐wide association and QTL studies, as well as genome reports, mutant screens, and advances in methods and technology. The Editorial Board of G3 believes that rapid dissemination of these data is the necessary foundation for analysis that leads to mechanistic insights. G3, published by the Genetics Society of America, meets the critical and growing need of the genetics community for rapid review and publication of important results in all areas of genetics. G3 offers the opportunity to publish the puzzling finding or to present unpublished results that may not have been submitted for review and publication due to a perceived lack of a potential high-impact finding. G3 has earned the DOAJ Seal, which is a mark of certification for open access journals, awarded by DOAJ to journals that achieve a high level of openness, adhere to Best Practice and high publishing standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信