用于高效光驱动离子传输的氧化钨纳米流体膜空位工程。

IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL
Jiansheng Chen, Lina Wang, Komal Gola, Xinyi Zhang, Yue Guo, Jinhua Sun, Pan Jia, Jinming Zhou
{"title":"用于高效光驱动离子传输的氧化钨纳米流体膜空位工程。","authors":"Jiansheng Chen, Lina Wang, Komal Gola, Xinyi Zhang, Yue Guo, Jinhua Sun, Pan Jia, Jinming Zhou","doi":"10.1016/j.jcis.2024.12.075","DOIUrl":null,"url":null,"abstract":"<p><p>Bioinspired light-driven ion transport has shown great potential in solar energy harvesting. To achieve efficiencies comparable to biological counterparts, effective coregulation of permselectivity and photoresponsivity is crucial. Herein, vacancy engineering has been proven to be a powerful strategy for considerably increasing the efficiency of light-driven ion transport in tungsten oxide (WO<sub>3-x</sub>) nanofluidic membranes by enhancing the negative surface charges and narrowing bandgaps. The enhancement in light-driven ion transport can be attributed to the efficient redistribution of surface charges due to the effective separation of photogenerated carriers. At an optimized vacancy concentration, WO<sub>2.66</sub> membrane (WO<sub>2.66</sub>M) delivers an ionic photocurrent of 0.8 μA cm<sup>-2</sup> in a 10<sup>-4</sup> M KCl electrolyte, which is four times higher than that generated by the original WO<sub>2.85</sub> membrane (WO<sub>2.85</sub>M). Following this strategy, uphill ion transport and photoenhanced osmotic energy conversion are successfully achieved in the WO<sub>3-x</sub> nanofluidic membrane system. This study shows that atomic vacancy engineering is an efficient approach to increase the light-driven ion transport dynamics of nanofluidics, providing an efficient strategy to enhance light-driven ion transport for potential applications in power harvesting and ion separation.</p>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"683 Pt 1","pages":"241-249"},"PeriodicalIF":9.4000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vacancy engineering in tungsten oxide nanofluidic membranes for high-efficiency light-driven ion transport.\",\"authors\":\"Jiansheng Chen, Lina Wang, Komal Gola, Xinyi Zhang, Yue Guo, Jinhua Sun, Pan Jia, Jinming Zhou\",\"doi\":\"10.1016/j.jcis.2024.12.075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bioinspired light-driven ion transport has shown great potential in solar energy harvesting. To achieve efficiencies comparable to biological counterparts, effective coregulation of permselectivity and photoresponsivity is crucial. Herein, vacancy engineering has been proven to be a powerful strategy for considerably increasing the efficiency of light-driven ion transport in tungsten oxide (WO<sub>3-x</sub>) nanofluidic membranes by enhancing the negative surface charges and narrowing bandgaps. The enhancement in light-driven ion transport can be attributed to the efficient redistribution of surface charges due to the effective separation of photogenerated carriers. At an optimized vacancy concentration, WO<sub>2.66</sub> membrane (WO<sub>2.66</sub>M) delivers an ionic photocurrent of 0.8 μA cm<sup>-2</sup> in a 10<sup>-4</sup> M KCl electrolyte, which is four times higher than that generated by the original WO<sub>2.85</sub> membrane (WO<sub>2.85</sub>M). Following this strategy, uphill ion transport and photoenhanced osmotic energy conversion are successfully achieved in the WO<sub>3-x</sub> nanofluidic membrane system. This study shows that atomic vacancy engineering is an efficient approach to increase the light-driven ion transport dynamics of nanofluidics, providing an efficient strategy to enhance light-driven ion transport for potential applications in power harvesting and ion separation.</p>\",\"PeriodicalId\":351,\"journal\":{\"name\":\"Journal of Colloid and Interface Science\",\"volume\":\"683 Pt 1\",\"pages\":\"241-249\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Colloid and Interface Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jcis.2024.12.075\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.jcis.2024.12.075","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vacancy engineering in tungsten oxide nanofluidic membranes for high-efficiency light-driven ion transport.

Bioinspired light-driven ion transport has shown great potential in solar energy harvesting. To achieve efficiencies comparable to biological counterparts, effective coregulation of permselectivity and photoresponsivity is crucial. Herein, vacancy engineering has been proven to be a powerful strategy for considerably increasing the efficiency of light-driven ion transport in tungsten oxide (WO3-x) nanofluidic membranes by enhancing the negative surface charges and narrowing bandgaps. The enhancement in light-driven ion transport can be attributed to the efficient redistribution of surface charges due to the effective separation of photogenerated carriers. At an optimized vacancy concentration, WO2.66 membrane (WO2.66M) delivers an ionic photocurrent of 0.8 μA cm-2 in a 10-4 M KCl electrolyte, which is four times higher than that generated by the original WO2.85 membrane (WO2.85M). Following this strategy, uphill ion transport and photoenhanced osmotic energy conversion are successfully achieved in the WO3-x nanofluidic membrane system. This study shows that atomic vacancy engineering is an efficient approach to increase the light-driven ion transport dynamics of nanofluidics, providing an efficient strategy to enhance light-driven ion transport for potential applications in power harvesting and ion separation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信