物理老化对网络氧化物玻璃离子导电性的影响

IF 8.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Ricardo F. Lancelotti, Shih-Yi Chuang, Edgar D. Zanotto, Sabyasachi Sen
{"title":"物理老化对网络氧化物玻璃离子导电性的影响","authors":"Ricardo F. Lancelotti, Shih-Yi Chuang, Edgar D. Zanotto, Sabyasachi Sen","doi":"10.1016/j.actamat.2024.120658","DOIUrl":null,"url":null,"abstract":"This study investigates the effect of α-relaxation induced by physical aging due to a down-jump in fictive temperature (<em>T<sub>f</sub></em>) on the alkali ion hopping dynamics and the resulting ionic conductivity in different network oxide glass-forming systems. Electrochemical impedance spectroscopy, differential scanning calorimetry, and density measurements were used to analyze this effect. Results from <em>ex situ</em> and <em>in situ</em> aging experiments show excellent agreement and demonstrate that α-relaxation during aging significantly reduces the ionic conductivity of the glass as its density increases and <em>T<sub>f</sub></em> decreases. In single-alkali Li disilicate and Li metaphosphate glasses, the migration enthalpy <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mrow is=\"true\"&gt;&lt;mstyle mathvariant=\"normal\" is=\"true\"&gt;&lt;mi is=\"true\"&gt;&amp;#x394;&lt;/mi&gt;&lt;/mstyle&gt;&lt;msub is=\"true\"&gt;&lt;mi is=\"true\"&gt;H&lt;/mi&gt;&lt;mi is=\"true\"&gt;m&lt;/mi&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.432ex\" role=\"img\" style=\"vertical-align: -0.582ex;\" viewbox=\"0 -796.9 2386.2 1047.3\" width=\"5.542ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMAIN-394\"></use></g></g><g is=\"true\" transform=\"translate(833,0)\"><g is=\"true\"><use xlink:href=\"#MJMATHI-48\"></use></g><g is=\"true\" transform=\"translate(831,-150)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMATHI-6D\"></use></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mstyle is=\"true\" mathvariant=\"normal\"><mi is=\"true\">Δ</mi></mstyle><msub is=\"true\"><mi is=\"true\">H</mi><mi is=\"true\">m</mi></msub></mrow></math></span></span><script type=\"math/mml\"><math><mrow is=\"true\"><mstyle mathvariant=\"normal\" is=\"true\"><mi is=\"true\">Δ</mi></mstyle><msub is=\"true\"><mi is=\"true\">H</mi><mi is=\"true\">m</mi></msub></mrow></math></script></span> of ionic conduction remains constant after aging, while the migration entropy <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mrow is=\"true\"&gt;&lt;mstyle mathvariant=\"normal\" is=\"true\"&gt;&lt;mi is=\"true\"&gt;&amp;#x394;&lt;/mi&gt;&lt;/mstyle&gt;&lt;msub is=\"true\"&gt;&lt;mi is=\"true\"&gt;S&lt;/mi&gt;&lt;mi is=\"true\"&gt;m&lt;/mi&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.432ex\" role=\"img\" style=\"vertical-align: -0.582ex;\" viewbox=\"0 -796.9 2168.2 1047.3\" width=\"5.036ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMAIN-394\"></use></g></g><g is=\"true\" transform=\"translate(833,0)\"><g is=\"true\"><use xlink:href=\"#MJMATHI-53\"></use></g><g is=\"true\" transform=\"translate(613,-150)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMATHI-6D\"></use></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mstyle is=\"true\" mathvariant=\"normal\"><mi is=\"true\">Δ</mi></mstyle><msub is=\"true\"><mi is=\"true\">S</mi><mi is=\"true\">m</mi></msub></mrow></math></span></span><script type=\"math/mml\"><math><mrow is=\"true\"><mstyle mathvariant=\"normal\" is=\"true\"><mi is=\"true\">Δ</mi></mstyle><msub is=\"true\"><mi is=\"true\">S</mi><mi is=\"true\">m</mi></msub></mrow></math></script></span> decreases, leading to a corresponding reduction in the hopping rate of mobile alkali ions. In contrast, in the mixed-modifier Na-Mg metaphosphate glass, both <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mrow is=\"true\"&gt;&lt;mstyle mathvariant=\"normal\" is=\"true\"&gt;&lt;mi is=\"true\"&gt;&amp;#x394;&lt;/mi&gt;&lt;/mstyle&gt;&lt;msub is=\"true\"&gt;&lt;mi is=\"true\"&gt;H&lt;/mi&gt;&lt;mi is=\"true\"&gt;m&lt;/mi&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.432ex\" role=\"img\" style=\"vertical-align: -0.582ex;\" viewbox=\"0 -796.9 2386.2 1047.3\" width=\"5.542ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMAIN-394\"></use></g></g><g is=\"true\" transform=\"translate(833,0)\"><g is=\"true\"><use xlink:href=\"#MJMATHI-48\"></use></g><g is=\"true\" transform=\"translate(831,-150)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMATHI-6D\"></use></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mstyle is=\"true\" mathvariant=\"normal\"><mi is=\"true\">Δ</mi></mstyle><msub is=\"true\"><mi is=\"true\">H</mi><mi is=\"true\">m</mi></msub></mrow></math></span></span><script type=\"math/mml\"><math><mrow is=\"true\"><mstyle mathvariant=\"normal\" is=\"true\"><mi is=\"true\">Δ</mi></mstyle><msub is=\"true\"><mi is=\"true\">H</mi><mi is=\"true\">m</mi></msub></mrow></math></script></span> and <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mrow is=\"true\"&gt;&lt;mstyle mathvariant=\"normal\" is=\"true\"&gt;&lt;mi is=\"true\"&gt;&amp;#x394;&lt;/mi&gt;&lt;/mstyle&gt;&lt;msub is=\"true\"&gt;&lt;mi is=\"true\"&gt;S&lt;/mi&gt;&lt;mi is=\"true\"&gt;m&lt;/mi&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.432ex\" role=\"img\" style=\"vertical-align: -0.582ex;\" viewbox=\"0 -796.9 2168.2 1047.3\" width=\"5.036ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMAIN-394\"></use></g></g><g is=\"true\" transform=\"translate(833,0)\"><g is=\"true\"><use xlink:href=\"#MJMATHI-53\"></use></g><g is=\"true\" transform=\"translate(613,-150)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMATHI-6D\"></use></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mstyle is=\"true\" mathvariant=\"normal\"><mi is=\"true\">Δ</mi></mstyle><msub is=\"true\"><mi is=\"true\">S</mi><mi is=\"true\">m</mi></msub></mrow></math></span></span><script type=\"math/mml\"><math><mrow is=\"true\"><mstyle mathvariant=\"normal\" is=\"true\"><mi is=\"true\">Δ</mi></mstyle><msub is=\"true\"><mi is=\"true\">S</mi><mi is=\"true\">m</mi></msub></mrow></math></script></span> increase after aging. This behavior is potentially explained by a spatial redistribution of Na and Mg cations likely occurring alongside α-relaxation during aging. The findings suggest that significant increases in the ionic conductivity of a glass, even by orders of magnitude, can be achieved by raising its <em>T<sub>f</sub></em>. This implies that fast-quenched glass products, such as thin films or fibers, may have novel applications as sensors and solid electrolytes.","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":"29 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of physical aging on ionic conductivity of network oxide glasses\",\"authors\":\"Ricardo F. Lancelotti, Shih-Yi Chuang, Edgar D. Zanotto, Sabyasachi Sen\",\"doi\":\"10.1016/j.actamat.2024.120658\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study investigates the effect of α-relaxation induced by physical aging due to a down-jump in fictive temperature (<em>T<sub>f</sub></em>) on the alkali ion hopping dynamics and the resulting ionic conductivity in different network oxide glass-forming systems. Electrochemical impedance spectroscopy, differential scanning calorimetry, and density measurements were used to analyze this effect. Results from <em>ex situ</em> and <em>in situ</em> aging experiments show excellent agreement and demonstrate that α-relaxation during aging significantly reduces the ionic conductivity of the glass as its density increases and <em>T<sub>f</sub></em> decreases. In single-alkali Li disilicate and Li metaphosphate glasses, the migration enthalpy <span><span style=\\\"\\\"></span><span data-mathml='&lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"&gt;&lt;mrow is=\\\"true\\\"&gt;&lt;mstyle mathvariant=\\\"normal\\\" is=\\\"true\\\"&gt;&lt;mi is=\\\"true\\\"&gt;&amp;#x394;&lt;/mi&gt;&lt;/mstyle&gt;&lt;msub is=\\\"true\\\"&gt;&lt;mi is=\\\"true\\\"&gt;H&lt;/mi&gt;&lt;mi is=\\\"true\\\"&gt;m&lt;/mi&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/math&gt;' role=\\\"presentation\\\" style=\\\"font-size: 90%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"2.432ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.582ex;\\\" viewbox=\\\"0 -796.9 2386.2 1047.3\\\" width=\\\"5.542ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><g is=\\\"true\\\"><g is=\\\"true\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMAIN-394\\\"></use></g></g><g is=\\\"true\\\" transform=\\\"translate(833,0)\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMATHI-48\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(831,-150)\\\"><use transform=\\\"scale(0.707)\\\" xlink:href=\\\"#MJMATHI-6D\\\"></use></g></g></g></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow is=\\\"true\\\"><mstyle is=\\\"true\\\" mathvariant=\\\"normal\\\"><mi is=\\\"true\\\">Δ</mi></mstyle><msub is=\\\"true\\\"><mi is=\\\"true\\\">H</mi><mi is=\\\"true\\\">m</mi></msub></mrow></math></span></span><script type=\\\"math/mml\\\"><math><mrow is=\\\"true\\\"><mstyle mathvariant=\\\"normal\\\" is=\\\"true\\\"><mi is=\\\"true\\\">Δ</mi></mstyle><msub is=\\\"true\\\"><mi is=\\\"true\\\">H</mi><mi is=\\\"true\\\">m</mi></msub></mrow></math></script></span> of ionic conduction remains constant after aging, while the migration entropy <span><span style=\\\"\\\"></span><span data-mathml='&lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"&gt;&lt;mrow is=\\\"true\\\"&gt;&lt;mstyle mathvariant=\\\"normal\\\" is=\\\"true\\\"&gt;&lt;mi is=\\\"true\\\"&gt;&amp;#x394;&lt;/mi&gt;&lt;/mstyle&gt;&lt;msub is=\\\"true\\\"&gt;&lt;mi is=\\\"true\\\"&gt;S&lt;/mi&gt;&lt;mi is=\\\"true\\\"&gt;m&lt;/mi&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/math&gt;' role=\\\"presentation\\\" style=\\\"font-size: 90%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"2.432ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.582ex;\\\" viewbox=\\\"0 -796.9 2168.2 1047.3\\\" width=\\\"5.036ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><g is=\\\"true\\\"><g is=\\\"true\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMAIN-394\\\"></use></g></g><g is=\\\"true\\\" transform=\\\"translate(833,0)\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMATHI-53\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(613,-150)\\\"><use transform=\\\"scale(0.707)\\\" xlink:href=\\\"#MJMATHI-6D\\\"></use></g></g></g></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow is=\\\"true\\\"><mstyle is=\\\"true\\\" mathvariant=\\\"normal\\\"><mi is=\\\"true\\\">Δ</mi></mstyle><msub is=\\\"true\\\"><mi is=\\\"true\\\">S</mi><mi is=\\\"true\\\">m</mi></msub></mrow></math></span></span><script type=\\\"math/mml\\\"><math><mrow is=\\\"true\\\"><mstyle mathvariant=\\\"normal\\\" is=\\\"true\\\"><mi is=\\\"true\\\">Δ</mi></mstyle><msub is=\\\"true\\\"><mi is=\\\"true\\\">S</mi><mi is=\\\"true\\\">m</mi></msub></mrow></math></script></span> decreases, leading to a corresponding reduction in the hopping rate of mobile alkali ions. In contrast, in the mixed-modifier Na-Mg metaphosphate glass, both <span><span style=\\\"\\\"></span><span data-mathml='&lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"&gt;&lt;mrow is=\\\"true\\\"&gt;&lt;mstyle mathvariant=\\\"normal\\\" is=\\\"true\\\"&gt;&lt;mi is=\\\"true\\\"&gt;&amp;#x394;&lt;/mi&gt;&lt;/mstyle&gt;&lt;msub is=\\\"true\\\"&gt;&lt;mi is=\\\"true\\\"&gt;H&lt;/mi&gt;&lt;mi is=\\\"true\\\"&gt;m&lt;/mi&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/math&gt;' role=\\\"presentation\\\" style=\\\"font-size: 90%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"2.432ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.582ex;\\\" viewbox=\\\"0 -796.9 2386.2 1047.3\\\" width=\\\"5.542ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><g is=\\\"true\\\"><g is=\\\"true\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMAIN-394\\\"></use></g></g><g is=\\\"true\\\" transform=\\\"translate(833,0)\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMATHI-48\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(831,-150)\\\"><use transform=\\\"scale(0.707)\\\" xlink:href=\\\"#MJMATHI-6D\\\"></use></g></g></g></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow is=\\\"true\\\"><mstyle is=\\\"true\\\" mathvariant=\\\"normal\\\"><mi is=\\\"true\\\">Δ</mi></mstyle><msub is=\\\"true\\\"><mi is=\\\"true\\\">H</mi><mi is=\\\"true\\\">m</mi></msub></mrow></math></span></span><script type=\\\"math/mml\\\"><math><mrow is=\\\"true\\\"><mstyle mathvariant=\\\"normal\\\" is=\\\"true\\\"><mi is=\\\"true\\\">Δ</mi></mstyle><msub is=\\\"true\\\"><mi is=\\\"true\\\">H</mi><mi is=\\\"true\\\">m</mi></msub></mrow></math></script></span> and <span><span style=\\\"\\\"></span><span data-mathml='&lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"&gt;&lt;mrow is=\\\"true\\\"&gt;&lt;mstyle mathvariant=\\\"normal\\\" is=\\\"true\\\"&gt;&lt;mi is=\\\"true\\\"&gt;&amp;#x394;&lt;/mi&gt;&lt;/mstyle&gt;&lt;msub is=\\\"true\\\"&gt;&lt;mi is=\\\"true\\\"&gt;S&lt;/mi&gt;&lt;mi is=\\\"true\\\"&gt;m&lt;/mi&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/math&gt;' role=\\\"presentation\\\" style=\\\"font-size: 90%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"2.432ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.582ex;\\\" viewbox=\\\"0 -796.9 2168.2 1047.3\\\" width=\\\"5.036ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><g is=\\\"true\\\"><g is=\\\"true\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMAIN-394\\\"></use></g></g><g is=\\\"true\\\" transform=\\\"translate(833,0)\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMATHI-53\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(613,-150)\\\"><use transform=\\\"scale(0.707)\\\" xlink:href=\\\"#MJMATHI-6D\\\"></use></g></g></g></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow is=\\\"true\\\"><mstyle is=\\\"true\\\" mathvariant=\\\"normal\\\"><mi is=\\\"true\\\">Δ</mi></mstyle><msub is=\\\"true\\\"><mi is=\\\"true\\\">S</mi><mi is=\\\"true\\\">m</mi></msub></mrow></math></span></span><script type=\\\"math/mml\\\"><math><mrow is=\\\"true\\\"><mstyle mathvariant=\\\"normal\\\" is=\\\"true\\\"><mi is=\\\"true\\\">Δ</mi></mstyle><msub is=\\\"true\\\"><mi is=\\\"true\\\">S</mi><mi is=\\\"true\\\">m</mi></msub></mrow></math></script></span> increase after aging. This behavior is potentially explained by a spatial redistribution of Na and Mg cations likely occurring alongside α-relaxation during aging. The findings suggest that significant increases in the ionic conductivity of a glass, even by orders of magnitude, can be achieved by raising its <em>T<sub>f</sub></em>. This implies that fast-quenched glass products, such as thin films or fibers, may have novel applications as sensors and solid electrolytes.\",\"PeriodicalId\":238,\"journal\":{\"name\":\"Acta Materialia\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Materialia\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.actamat.2024.120658\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Materialia","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.actamat.2024.120658","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。

Effect of physical aging on ionic conductivity of network oxide glasses

Effect of physical aging on ionic conductivity of network oxide glasses
This study investigates the effect of α-relaxation induced by physical aging due to a down-jump in fictive temperature (Tf) on the alkali ion hopping dynamics and the resulting ionic conductivity in different network oxide glass-forming systems. Electrochemical impedance spectroscopy, differential scanning calorimetry, and density measurements were used to analyze this effect. Results from ex situ and in situ aging experiments show excellent agreement and demonstrate that α-relaxation during aging significantly reduces the ionic conductivity of the glass as its density increases and Tf decreases. In single-alkali Li disilicate and Li metaphosphate glasses, the migration enthalpy ΔHm of ionic conduction remains constant after aging, while the migration entropy ΔSm decreases, leading to a corresponding reduction in the hopping rate of mobile alkali ions. In contrast, in the mixed-modifier Na-Mg metaphosphate glass, both ΔHm and ΔSm increase after aging. This behavior is potentially explained by a spatial redistribution of Na and Mg cations likely occurring alongside α-relaxation during aging. The findings suggest that significant increases in the ionic conductivity of a glass, even by orders of magnitude, can be achieved by raising its Tf. This implies that fast-quenched glass products, such as thin films or fibers, may have novel applications as sensors and solid electrolytes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Materialia
Acta Materialia 工程技术-材料科学:综合
CiteScore
16.10
自引率
8.50%
发文量
801
审稿时长
53 days
期刊介绍: Acta Materialia serves as a platform for publishing full-length, original papers and commissioned overviews that contribute to a profound understanding of the correlation between the processing, structure, and properties of inorganic materials. The journal seeks papers with high impact potential or those that significantly propel the field forward. The scope includes the atomic and molecular arrangements, chemical and electronic structures, and microstructure of materials, focusing on their mechanical or functional behavior across all length scales, including nanostructures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信