{"title":"基于生成式对抗网络的轻量级自适应空间信道注意力高效网络 B3,用于从采样不足的数据中重建磁共振图像。","authors":"Penta Anil Kumar, Ramalingam Gunasundari","doi":"10.1016/j.mri.2024.110281","DOIUrl":null,"url":null,"abstract":"<p><p>Magnetic Resonance Imaging (MRI) stands out as a notable non-invasive method for medical imaging assessments, widely employed in early medical diagnoses due to its exceptional resolution in portraying soft tissue structures. However, the MRI method faces challenges with its inherently slow acquisition process, stemming from the sequential sampling in k-space and limitations in traversal speed due to physiological and hardware constraints. Compressed Sensing in MRI (CS-MRI) accelerates image acquisition by utilizing greatly under-sampled k-space information. Despite its advantages, conventional CS-MRI encounters issues such as sluggish iterations and artefacts at higher acceleration factors. Recent advancements integrate deep learning models into CS-MRI, inspired by successes in various computer vision domains. It has drawn significant attention from the MRI community because of its great potential for image reconstruction from undersampled k-space data in fast MRI. This paper proposes a lightweight Adaptive Spatial-Channel Attention EfficientNet B3-based Generative Adversarial Network (ASCA-EffNet GAN) for fast, high-quality MR image reconstruction from greatly under-sampled k-space information in CS-MRI. The proposed GAN employs a U-net generator with ASCA-based EfficientNet B3 for encoder blocks and a ResNet decoder. The discriminator is a binary classifier with ASCA-based EfficientNet B3, a fully connected layer and a sigmoid layer. The EfficientNet B3 utilizes a compound scaling strategy that achieves a balance amongst model depth, width, and resolution, resulting in optimal performance with a reduced number of parameters. Furthermore, the adaptive attention mechanisms in the proposed ASCA-EffNet GAN effectively capture spatial and channel-wise features, contributing to detailed anatomical structure reconstruction. Experimental evaluations on the dataset demonstrate ASCA-EffNet GAN's superior performance across various metrics, surpassing conventional reconstruction methods. Hence, ASCA-EffNet GAN showcases remarkable reconstruction capabilities even under high under-sampling rates, making it suitable for clinical applications.</p>","PeriodicalId":18165,"journal":{"name":"Magnetic resonance imaging","volume":" ","pages":"110281"},"PeriodicalIF":2.1000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A lightweight adaptive spatial channel attention efficient net B3 based generative adversarial network approach for MR image reconstruction from under sampled data.\",\"authors\":\"Penta Anil Kumar, Ramalingam Gunasundari\",\"doi\":\"10.1016/j.mri.2024.110281\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Magnetic Resonance Imaging (MRI) stands out as a notable non-invasive method for medical imaging assessments, widely employed in early medical diagnoses due to its exceptional resolution in portraying soft tissue structures. However, the MRI method faces challenges with its inherently slow acquisition process, stemming from the sequential sampling in k-space and limitations in traversal speed due to physiological and hardware constraints. Compressed Sensing in MRI (CS-MRI) accelerates image acquisition by utilizing greatly under-sampled k-space information. Despite its advantages, conventional CS-MRI encounters issues such as sluggish iterations and artefacts at higher acceleration factors. Recent advancements integrate deep learning models into CS-MRI, inspired by successes in various computer vision domains. It has drawn significant attention from the MRI community because of its great potential for image reconstruction from undersampled k-space data in fast MRI. This paper proposes a lightweight Adaptive Spatial-Channel Attention EfficientNet B3-based Generative Adversarial Network (ASCA-EffNet GAN) for fast, high-quality MR image reconstruction from greatly under-sampled k-space information in CS-MRI. The proposed GAN employs a U-net generator with ASCA-based EfficientNet B3 for encoder blocks and a ResNet decoder. The discriminator is a binary classifier with ASCA-based EfficientNet B3, a fully connected layer and a sigmoid layer. The EfficientNet B3 utilizes a compound scaling strategy that achieves a balance amongst model depth, width, and resolution, resulting in optimal performance with a reduced number of parameters. Furthermore, the adaptive attention mechanisms in the proposed ASCA-EffNet GAN effectively capture spatial and channel-wise features, contributing to detailed anatomical structure reconstruction. Experimental evaluations on the dataset demonstrate ASCA-EffNet GAN's superior performance across various metrics, surpassing conventional reconstruction methods. Hence, ASCA-EffNet GAN showcases remarkable reconstruction capabilities even under high under-sampling rates, making it suitable for clinical applications.</p>\",\"PeriodicalId\":18165,\"journal\":{\"name\":\"Magnetic resonance imaging\",\"volume\":\" \",\"pages\":\"110281\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Magnetic resonance imaging\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.mri.2024.110281\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic resonance imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.mri.2024.110281","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
A lightweight adaptive spatial channel attention efficient net B3 based generative adversarial network approach for MR image reconstruction from under sampled data.
Magnetic Resonance Imaging (MRI) stands out as a notable non-invasive method for medical imaging assessments, widely employed in early medical diagnoses due to its exceptional resolution in portraying soft tissue structures. However, the MRI method faces challenges with its inherently slow acquisition process, stemming from the sequential sampling in k-space and limitations in traversal speed due to physiological and hardware constraints. Compressed Sensing in MRI (CS-MRI) accelerates image acquisition by utilizing greatly under-sampled k-space information. Despite its advantages, conventional CS-MRI encounters issues such as sluggish iterations and artefacts at higher acceleration factors. Recent advancements integrate deep learning models into CS-MRI, inspired by successes in various computer vision domains. It has drawn significant attention from the MRI community because of its great potential for image reconstruction from undersampled k-space data in fast MRI. This paper proposes a lightweight Adaptive Spatial-Channel Attention EfficientNet B3-based Generative Adversarial Network (ASCA-EffNet GAN) for fast, high-quality MR image reconstruction from greatly under-sampled k-space information in CS-MRI. The proposed GAN employs a U-net generator with ASCA-based EfficientNet B3 for encoder blocks and a ResNet decoder. The discriminator is a binary classifier with ASCA-based EfficientNet B3, a fully connected layer and a sigmoid layer. The EfficientNet B3 utilizes a compound scaling strategy that achieves a balance amongst model depth, width, and resolution, resulting in optimal performance with a reduced number of parameters. Furthermore, the adaptive attention mechanisms in the proposed ASCA-EffNet GAN effectively capture spatial and channel-wise features, contributing to detailed anatomical structure reconstruction. Experimental evaluations on the dataset demonstrate ASCA-EffNet GAN's superior performance across various metrics, surpassing conventional reconstruction methods. Hence, ASCA-EffNet GAN showcases remarkable reconstruction capabilities even under high under-sampling rates, making it suitable for clinical applications.
期刊介绍:
Magnetic Resonance Imaging (MRI) is the first international multidisciplinary journal encompassing physical, life, and clinical science investigations as they relate to the development and use of magnetic resonance imaging. MRI is dedicated to both basic research, technological innovation and applications, providing a single forum for communication among radiologists, physicists, chemists, biochemists, biologists, engineers, internists, pathologists, physiologists, computer scientists, and mathematicians.