n 分量广义高阶萨萨-萨妻方程的 N 索利子解的相互作用和渐近分析。

IF 2.7 2区 数学 Q1 MATHEMATICS, APPLIED
Chaos Pub Date : 2024-12-01 DOI:10.1063/5.0237425
Zhuojie Lin, Zhenya Yan
{"title":"n 分量广义高阶萨萨-萨妻方程的 N 索利子解的相互作用和渐近分析。","authors":"Zhuojie Lin, Zhenya Yan","doi":"10.1063/5.0237425","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we systematically study the N-solitons and asymptotic analysis of the integrable n-component third-fifth-order Sasa-Satsuma equations. We conduct the spectral analysis on the (n+2)-order matrix Lax pair to formulate a Riemann-Hilbert (RH) problem, which is used to generate the N-soliton solutions via the determinants. Moreover, we visually represent the interaction dynamics of multi-soliton solutions and analyze their asymptotic behaviors. Finally, we present the higher-order N-soliton solutions by dealing with the RH problem with higher-order zeros. These results will be useful to further analyze the multi-soliton structures and design the related physical experiments.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"34 12","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interactions and asymptotic analysis of N-soliton solutions for the n-component generalized higher-order Sasa-Satsuma equations.\",\"authors\":\"Zhuojie Lin, Zhenya Yan\",\"doi\":\"10.1063/5.0237425\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this paper, we systematically study the N-solitons and asymptotic analysis of the integrable n-component third-fifth-order Sasa-Satsuma equations. We conduct the spectral analysis on the (n+2)-order matrix Lax pair to formulate a Riemann-Hilbert (RH) problem, which is used to generate the N-soliton solutions via the determinants. Moreover, we visually represent the interaction dynamics of multi-soliton solutions and analyze their asymptotic behaviors. Finally, we present the higher-order N-soliton solutions by dealing with the RH problem with higher-order zeros. These results will be useful to further analyze the multi-soliton structures and design the related physical experiments.</p>\",\"PeriodicalId\":9974,\"journal\":{\"name\":\"Chaos\",\"volume\":\"34 12\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0237425\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0237425","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文系统地研究了可积分的 n 分量三阶-五阶 Sasa-Satsuma 方程的 N-孑子和渐近分析。我们对(n+2)阶矩阵拉克斯对进行谱分析,提出黎曼-希尔伯特(RH)问题,并通过行列式生成 N-孑子解。此外,我们还直观地表示了多孑子解的相互作用动力学,并分析了它们的渐近行为。最后,我们通过处理具有高阶零点的 RH 问题,提出了高阶 N-soliton 解。这些结果将有助于进一步分析多孑子结构和设计相关的物理实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interactions and asymptotic analysis of N-soliton solutions for the n-component generalized higher-order Sasa-Satsuma equations.

In this paper, we systematically study the N-solitons and asymptotic analysis of the integrable n-component third-fifth-order Sasa-Satsuma equations. We conduct the spectral analysis on the (n+2)-order matrix Lax pair to formulate a Riemann-Hilbert (RH) problem, which is used to generate the N-soliton solutions via the determinants. Moreover, we visually represent the interaction dynamics of multi-soliton solutions and analyze their asymptotic behaviors. Finally, we present the higher-order N-soliton solutions by dealing with the RH problem with higher-order zeros. These results will be useful to further analyze the multi-soliton structures and design the related physical experiments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos
Chaos 物理-物理:数学物理
CiteScore
5.20
自引率
13.80%
发文量
448
审稿时长
2.3 months
期刊介绍: Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信