具有可控表面缺陷的氧卤化铋半导体在光催化降解空气中甲苯中的实际可行性。

IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL
Jinjian Zhang, Kumar Vikrant, Changho Yeon, Chan-Woo Lee, Ki-Hyun Kim
{"title":"具有可控表面缺陷的氧卤化铋半导体在光催化降解空气中甲苯中的实际可行性。","authors":"Jinjian Zhang, Kumar Vikrant, Changho Yeon, Chan-Woo Lee, Ki-Hyun Kim","doi":"10.1016/j.jcis.2024.12.047","DOIUrl":null,"url":null,"abstract":"<p><p>The photocatalytic degradation (PCD) of toluene (as model aromatic volatile organic compound (VOC)) is studied using two-dimensional semiconductors (bismuth oxyhalides (BiOX (X = Cl and Br)) synthesized with surface defects (BiOX-R (R = reduction)) through a solvothermal-induced reduction process. The PCD efficiency of BiOCl-R against 5 ppm toluene (20 % relative humidity (RH)) is 98.6 % under ultraviolet light irradiation with the quantum yield and clean air delivery rate of 1.04E-03 molecules photon<sup>-1</sup> and 3 L/h, respectively. A combined evaluation of catalyst properties, experimental data, and density functional theory simulations consistently indicates that the formation of surface defects should promote the adsorption and activation of toluene, molecular oxygen (O<sub>2</sub>), and water (H<sub>2</sub>O) molecules. Meanwhile, the geometric and electronic structure of defective BiOX favorably generates superoxide anion (O<sub>2</sub><sup>-</sup>) and hydroxyl (OH) radicals through electron (e<sup>-</sup>)-assisted O<sub>2</sub> activation and hole (h<sup>+</sup>)-mediated H<sub>2</sub>O oxidation, respectively. Notably, the BiOCl-R surface becomes more advantageous to reduce the reaction energy barrier in the ring-opening processes of intermediate forms like benzaldehyde and benzoic acid. Overall, the results of this study offer practical guidelines for the design of advanced photocatalysts with controlled surface defects for the efficient PCD of aromatic VOCs in air.</p>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"683 Pt 1","pages":"90-100"},"PeriodicalIF":9.4000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The practical feasibility of bismuth oxyhalide semiconductors with controlled surface defects in photocatalytic degradation of toluene in air.\",\"authors\":\"Jinjian Zhang, Kumar Vikrant, Changho Yeon, Chan-Woo Lee, Ki-Hyun Kim\",\"doi\":\"10.1016/j.jcis.2024.12.047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The photocatalytic degradation (PCD) of toluene (as model aromatic volatile organic compound (VOC)) is studied using two-dimensional semiconductors (bismuth oxyhalides (BiOX (X = Cl and Br)) synthesized with surface defects (BiOX-R (R = reduction)) through a solvothermal-induced reduction process. The PCD efficiency of BiOCl-R against 5 ppm toluene (20 % relative humidity (RH)) is 98.6 % under ultraviolet light irradiation with the quantum yield and clean air delivery rate of 1.04E-03 molecules photon<sup>-1</sup> and 3 L/h, respectively. A combined evaluation of catalyst properties, experimental data, and density functional theory simulations consistently indicates that the formation of surface defects should promote the adsorption and activation of toluene, molecular oxygen (O<sub>2</sub>), and water (H<sub>2</sub>O) molecules. Meanwhile, the geometric and electronic structure of defective BiOX favorably generates superoxide anion (O<sub>2</sub><sup>-</sup>) and hydroxyl (OH) radicals through electron (e<sup>-</sup>)-assisted O<sub>2</sub> activation and hole (h<sup>+</sup>)-mediated H<sub>2</sub>O oxidation, respectively. Notably, the BiOCl-R surface becomes more advantageous to reduce the reaction energy barrier in the ring-opening processes of intermediate forms like benzaldehyde and benzoic acid. Overall, the results of this study offer practical guidelines for the design of advanced photocatalysts with controlled surface defects for the efficient PCD of aromatic VOCs in air.</p>\",\"PeriodicalId\":351,\"journal\":{\"name\":\"Journal of Colloid and Interface Science\",\"volume\":\"683 Pt 1\",\"pages\":\"90-100\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Colloid and Interface Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jcis.2024.12.047\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.jcis.2024.12.047","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
The practical feasibility of bismuth oxyhalide semiconductors with controlled surface defects in photocatalytic degradation of toluene in air.

The photocatalytic degradation (PCD) of toluene (as model aromatic volatile organic compound (VOC)) is studied using two-dimensional semiconductors (bismuth oxyhalides (BiOX (X = Cl and Br)) synthesized with surface defects (BiOX-R (R = reduction)) through a solvothermal-induced reduction process. The PCD efficiency of BiOCl-R against 5 ppm toluene (20 % relative humidity (RH)) is 98.6 % under ultraviolet light irradiation with the quantum yield and clean air delivery rate of 1.04E-03 molecules photon-1 and 3 L/h, respectively. A combined evaluation of catalyst properties, experimental data, and density functional theory simulations consistently indicates that the formation of surface defects should promote the adsorption and activation of toluene, molecular oxygen (O2), and water (H2O) molecules. Meanwhile, the geometric and electronic structure of defective BiOX favorably generates superoxide anion (O2-) and hydroxyl (OH) radicals through electron (e-)-assisted O2 activation and hole (h+)-mediated H2O oxidation, respectively. Notably, the BiOCl-R surface becomes more advantageous to reduce the reaction energy barrier in the ring-opening processes of intermediate forms like benzaldehyde and benzoic acid. Overall, the results of this study offer practical guidelines for the design of advanced photocatalysts with controlled surface defects for the efficient PCD of aromatic VOCs in air.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信