Wei Ding, Min Feng, Ziqi Zhang, Faying Fan, Long Chen, Kewei Zhang
{"title":"利用钒酸铋/氧化钨异质结构进行机器学习驱动的痕量三乙胺识别。","authors":"Wei Ding, Min Feng, Ziqi Zhang, Faying Fan, Long Chen, Kewei Zhang","doi":"10.1016/j.jcis.2024.12.028","DOIUrl":null,"url":null,"abstract":"<p><p>Triethylamine, an extensively used material in industrial organic synthesis, is hazardous to the human respiratory and nervous systems, but its accurate detection and prediction has been a long-standing challenge. Herein, a machine learning-motivated chemiresistive sensor that can predict ppm-level triethylamine is designed. The zero-dimensional (0D) bismuth vanadate (BiVO<sub>4</sub>) nanoparticles were anchored on the surface of three-dimensional (3D) tungsten oxide (WO<sub>3</sub>) architectures to form hierarchical BiVO<sub>4</sub>/WO<sub>3</sub> heterostructures, which demonstrates remarkable triethylamine-sensing performance such as high response of 21 (4 times higher than pristine WO<sub>3</sub>) at optimal temperature of 190 °C, low detection limit of 57 ppb, long-term stability, reproducibility and good anti-interference property. Furthermore, an intelligent framework with good visibility was developed to identify ppm-level triethylamine and predict its definite concentration. Using feature parameters extracted from the sensor responses, the machine learning-based classifier provides a decision boundary with 92.3 % accuracy, and the prediction of unknown gas concentration was successfully achieved by linear regression model after training a series of as-known concentrations. This work not only provides a fundamental understanding of BiVO<sub>4</sub>-based heterostructures in gas sensors but also offers an intelligent strategy to identify and predict trace triethylamine under an interfering atmosphere.</p>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"682 ","pages":"1140-1150"},"PeriodicalIF":9.4000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine learning-motivated trace triethylamine identification by bismuth vanadate/tungsten oxide heterostructures.\",\"authors\":\"Wei Ding, Min Feng, Ziqi Zhang, Faying Fan, Long Chen, Kewei Zhang\",\"doi\":\"10.1016/j.jcis.2024.12.028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Triethylamine, an extensively used material in industrial organic synthesis, is hazardous to the human respiratory and nervous systems, but its accurate detection and prediction has been a long-standing challenge. Herein, a machine learning-motivated chemiresistive sensor that can predict ppm-level triethylamine is designed. The zero-dimensional (0D) bismuth vanadate (BiVO<sub>4</sub>) nanoparticles were anchored on the surface of three-dimensional (3D) tungsten oxide (WO<sub>3</sub>) architectures to form hierarchical BiVO<sub>4</sub>/WO<sub>3</sub> heterostructures, which demonstrates remarkable triethylamine-sensing performance such as high response of 21 (4 times higher than pristine WO<sub>3</sub>) at optimal temperature of 190 °C, low detection limit of 57 ppb, long-term stability, reproducibility and good anti-interference property. Furthermore, an intelligent framework with good visibility was developed to identify ppm-level triethylamine and predict its definite concentration. Using feature parameters extracted from the sensor responses, the machine learning-based classifier provides a decision boundary with 92.3 % accuracy, and the prediction of unknown gas concentration was successfully achieved by linear regression model after training a series of as-known concentrations. This work not only provides a fundamental understanding of BiVO<sub>4</sub>-based heterostructures in gas sensors but also offers an intelligent strategy to identify and predict trace triethylamine under an interfering atmosphere.</p>\",\"PeriodicalId\":351,\"journal\":{\"name\":\"Journal of Colloid and Interface Science\",\"volume\":\"682 \",\"pages\":\"1140-1150\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Colloid and Interface Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jcis.2024.12.028\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.jcis.2024.12.028","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Machine learning-motivated trace triethylamine identification by bismuth vanadate/tungsten oxide heterostructures.
Triethylamine, an extensively used material in industrial organic synthesis, is hazardous to the human respiratory and nervous systems, but its accurate detection and prediction has been a long-standing challenge. Herein, a machine learning-motivated chemiresistive sensor that can predict ppm-level triethylamine is designed. The zero-dimensional (0D) bismuth vanadate (BiVO4) nanoparticles were anchored on the surface of three-dimensional (3D) tungsten oxide (WO3) architectures to form hierarchical BiVO4/WO3 heterostructures, which demonstrates remarkable triethylamine-sensing performance such as high response of 21 (4 times higher than pristine WO3) at optimal temperature of 190 °C, low detection limit of 57 ppb, long-term stability, reproducibility and good anti-interference property. Furthermore, an intelligent framework with good visibility was developed to identify ppm-level triethylamine and predict its definite concentration. Using feature parameters extracted from the sensor responses, the machine learning-based classifier provides a decision boundary with 92.3 % accuracy, and the prediction of unknown gas concentration was successfully achieved by linear regression model after training a series of as-known concentrations. This work not only provides a fundamental understanding of BiVO4-based heterostructures in gas sensors but also offers an intelligent strategy to identify and predict trace triethylamine under an interfering atmosphere.
期刊介绍:
The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality.
Emphasis:
The journal emphasizes fundamental scientific innovation within the following categories:
A.Colloidal Materials and Nanomaterials
B.Soft Colloidal and Self-Assembly Systems
C.Adsorption, Catalysis, and Electrochemistry
D.Interfacial Processes, Capillarity, and Wetting
E.Biomaterials and Nanomedicine
F.Energy Conversion and Storage, and Environmental Technologies