Shymaa I A Abdel-Dayem, Asmaa M Otify, Fabio Arturo Iannotti, Fatema R Saber, Aniello Schiano Moriello, Simone Giovannuzzi, Łukasz Świątek, Alessandro Bonardi, Paola Gratteri, Krystyna Skalicka-Woźniak, Claudiu T Supuran
{"title":"Damsin 和 neoambrosin:对 PPAR 和 TRPA1 受体具有亲和力和不同活性的两种倍半萜内酯。","authors":"Shymaa I A Abdel-Dayem, Asmaa M Otify, Fabio Arturo Iannotti, Fatema R Saber, Aniello Schiano Moriello, Simone Giovannuzzi, Łukasz Świątek, Alessandro Bonardi, Paola Gratteri, Krystyna Skalicka-Woźniak, Claudiu T Supuran","doi":"10.1016/j.bioorg.2024.108032","DOIUrl":null,"url":null,"abstract":"<p><p>Ambrosia maritima L. (family Asteraceae) is an annual herb widely distributed throughout the Mediterranean region and Africa. The herb is employed in folk medicine for the treatment of many ailments. Herein, we report a comprehensive investigation of the diverse biological potential of two sesquiterpene lactones, damsin and neoambrosin, isolated from Ambrosia maritima. 1D and 2D NMR and HR-ESI-MS/MS were employed to characterize the chemical structures of both compounds. In order to identify biological targets of both compounds we investigated their potential affinity for peroxisome proliferator-activated receptors (PPARs) and transient receptor potential (TRP) channels, which are pleiotropic classes of receptors implicated in essential functions of the body. This was investigated using a luciferase assay and a calcium fluorometric assay. A carbonic anhydrase inhibition assay was also performed using stopped flow CO<sub>2</sub> hydrase spectrophotometric assay. Our analysis revealed that unlike damsin, neoambrosin showed a selective partial agonist effect on PPARγ receptors and TRPA1 channels. Its binding mode was investigated through in silico analysis. Both compounds showed no affinity for the tested carbonic anhydrases. Overall, our study details the chemical properties of neoambrosin and damsin and highlights neoambrosin as novel, cost-effective partial agonist of PPARɣ and TRPA1 receptors despite additional in vivo studies are needed to elucidate its biological and pharmacological properties.</p>","PeriodicalId":257,"journal":{"name":"Bioorganic Chemistry","volume":"154 ","pages":"108032"},"PeriodicalIF":4.5000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Damsin and neoambrosin: Two sesquiterpene lactones with affinity and different activity for PPAR and TRPA1 receptors.\",\"authors\":\"Shymaa I A Abdel-Dayem, Asmaa M Otify, Fabio Arturo Iannotti, Fatema R Saber, Aniello Schiano Moriello, Simone Giovannuzzi, Łukasz Świątek, Alessandro Bonardi, Paola Gratteri, Krystyna Skalicka-Woźniak, Claudiu T Supuran\",\"doi\":\"10.1016/j.bioorg.2024.108032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ambrosia maritima L. (family Asteraceae) is an annual herb widely distributed throughout the Mediterranean region and Africa. The herb is employed in folk medicine for the treatment of many ailments. Herein, we report a comprehensive investigation of the diverse biological potential of two sesquiterpene lactones, damsin and neoambrosin, isolated from Ambrosia maritima. 1D and 2D NMR and HR-ESI-MS/MS were employed to characterize the chemical structures of both compounds. In order to identify biological targets of both compounds we investigated their potential affinity for peroxisome proliferator-activated receptors (PPARs) and transient receptor potential (TRP) channels, which are pleiotropic classes of receptors implicated in essential functions of the body. This was investigated using a luciferase assay and a calcium fluorometric assay. A carbonic anhydrase inhibition assay was also performed using stopped flow CO<sub>2</sub> hydrase spectrophotometric assay. Our analysis revealed that unlike damsin, neoambrosin showed a selective partial agonist effect on PPARγ receptors and TRPA1 channels. Its binding mode was investigated through in silico analysis. Both compounds showed no affinity for the tested carbonic anhydrases. Overall, our study details the chemical properties of neoambrosin and damsin and highlights neoambrosin as novel, cost-effective partial agonist of PPARɣ and TRPA1 receptors despite additional in vivo studies are needed to elucidate its biological and pharmacological properties.</p>\",\"PeriodicalId\":257,\"journal\":{\"name\":\"Bioorganic Chemistry\",\"volume\":\"154 \",\"pages\":\"108032\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioorganic Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.bioorg.2024.108032\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.bioorg.2024.108032","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Damsin and neoambrosin: Two sesquiterpene lactones with affinity and different activity for PPAR and TRPA1 receptors.
Ambrosia maritima L. (family Asteraceae) is an annual herb widely distributed throughout the Mediterranean region and Africa. The herb is employed in folk medicine for the treatment of many ailments. Herein, we report a comprehensive investigation of the diverse biological potential of two sesquiterpene lactones, damsin and neoambrosin, isolated from Ambrosia maritima. 1D and 2D NMR and HR-ESI-MS/MS were employed to characterize the chemical structures of both compounds. In order to identify biological targets of both compounds we investigated their potential affinity for peroxisome proliferator-activated receptors (PPARs) and transient receptor potential (TRP) channels, which are pleiotropic classes of receptors implicated in essential functions of the body. This was investigated using a luciferase assay and a calcium fluorometric assay. A carbonic anhydrase inhibition assay was also performed using stopped flow CO2 hydrase spectrophotometric assay. Our analysis revealed that unlike damsin, neoambrosin showed a selective partial agonist effect on PPARγ receptors and TRPA1 channels. Its binding mode was investigated through in silico analysis. Both compounds showed no affinity for the tested carbonic anhydrases. Overall, our study details the chemical properties of neoambrosin and damsin and highlights neoambrosin as novel, cost-effective partial agonist of PPARɣ and TRPA1 receptors despite additional in vivo studies are needed to elucidate its biological and pharmacological properties.
期刊介绍:
Bioorganic Chemistry publishes research that addresses biological questions at the molecular level, using organic chemistry and principles of physical organic chemistry. The scope of the journal covers a range of topics at the organic chemistry-biology interface, including: enzyme catalysis, biotransformation and enzyme inhibition; nucleic acids chemistry; medicinal chemistry; natural product chemistry, natural product synthesis and natural product biosynthesis; antimicrobial agents; lipid and peptide chemistry; biophysical chemistry; biological probes; bio-orthogonal chemistry and biomimetic chemistry.
For manuscripts dealing with synthetic bioactive compounds, the Journal requires that the molecular target of the compounds described must be known, and must be demonstrated experimentally in the manuscript. For studies involving natural products, if the molecular target is unknown, some data beyond simple cell-based toxicity studies to provide insight into the mechanism of action is required. Studies supported by molecular docking are welcome, but must be supported by experimental data. The Journal does not consider manuscripts that are purely theoretical or computational in nature.
The Journal publishes regular articles, short communications and reviews. Reviews are normally invited by Editors or Editorial Board members. Authors of unsolicited reviews should first contact an Editor or Editorial Board member to determine whether the proposed article is within the scope of the Journal.