Marc Mars, Carl Rossdeutscher, Walter Simon, Roland Steinbauer
{"title":"德西特时空中的边缘外困管","authors":"Marc Mars, Carl Rossdeutscher, Walter Simon, Roland Steinbauer","doi":"10.1007/s11005-024-01884-y","DOIUrl":null,"url":null,"abstract":"<div><p>We prove two results which are relevant for constructing marginally outer trapped tubes (MOTTs) in de Sitter spacetime. The first one (Theorem 1) holds more generally, namely for spacetimes satisfying the null convergence condition and containing a timelike conformal Killing vector with a “temporal function”. We show that all marginally outer trapped surfaces (MOTSs) in such a spacetime are unstable. This prevents application of standard results on the propagation of stable MOTSs to MOTTs. On the other hand, it was shown recently, Charlton et al. (minimal surfaces and alternating multiple zetas, arXiv:2407.07130), that for every sufficiently high genus, there exists a smooth, complete family of CMC surfaces embedded in the round 3-sphere <span>\\(\\mathbb {S}^3\\)</span>. This family connects a Lawson minimal surface with a doubly covered geodesic 2-sphere. We show (Theorem 2) by a simple scaling argument that this result translates to an existence proof for complete MOTTs with CMC sections in de Sitter spacetime. Moreover, the area of these sections increases strictly monotonically. We compare this result with an area law obtained before for holographic screens.</p></div>","PeriodicalId":685,"journal":{"name":"Letters in Mathematical Physics","volume":"114 6","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11005-024-01884-y.pdf","citationCount":"0","resultStr":"{\"title\":\"Marginally outer trapped tubes in de Sitter spacetime\",\"authors\":\"Marc Mars, Carl Rossdeutscher, Walter Simon, Roland Steinbauer\",\"doi\":\"10.1007/s11005-024-01884-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We prove two results which are relevant for constructing marginally outer trapped tubes (MOTTs) in de Sitter spacetime. The first one (Theorem 1) holds more generally, namely for spacetimes satisfying the null convergence condition and containing a timelike conformal Killing vector with a “temporal function”. We show that all marginally outer trapped surfaces (MOTSs) in such a spacetime are unstable. This prevents application of standard results on the propagation of stable MOTSs to MOTTs. On the other hand, it was shown recently, Charlton et al. (minimal surfaces and alternating multiple zetas, arXiv:2407.07130), that for every sufficiently high genus, there exists a smooth, complete family of CMC surfaces embedded in the round 3-sphere <span>\\\\(\\\\mathbb {S}^3\\\\)</span>. This family connects a Lawson minimal surface with a doubly covered geodesic 2-sphere. We show (Theorem 2) by a simple scaling argument that this result translates to an existence proof for complete MOTTs with CMC sections in de Sitter spacetime. Moreover, the area of these sections increases strictly monotonically. We compare this result with an area law obtained before for holographic screens.</p></div>\",\"PeriodicalId\":685,\"journal\":{\"name\":\"Letters in Mathematical Physics\",\"volume\":\"114 6\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11005-024-01884-y.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Letters in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11005-024-01884-y\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Letters in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11005-024-01884-y","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0
摘要
我们证明了两个与在德西特时空中构造边缘外困管(MOTT)相关的结果。第一个结果(定理 1)更普遍地适用于满足空收敛条件并包含具有 "时间函数 "的时间共形基林向量的时空。我们证明,在这样的时空中,所有边缘外困面(MOTS)都是不稳定的。这使得关于稳定 MOTS 传播的标准结果无法应用于 MOTT。另一方面,查尔顿等人(minimal surfaces and alternating multiple zetas, arXiv:2407.07130)最近证明,对于每一个足够高的属,都存在一个嵌入圆3球(\mathbb {S}^3\)的光滑、完整的CMC曲面族。这个族连接着一个劳森极小曲面和一个双覆盖测地2球。我们通过一个简单的缩放论证证明(定理 2),这一结果可以转化为在德西特时空中具有 CMC 截面的完整 MOTT 的存在性证明。此外,这些截面的面积严格地单调递增。我们将这一结果与之前得到的全息屏幕的面积定律进行了比较。
Marginally outer trapped tubes in de Sitter spacetime
We prove two results which are relevant for constructing marginally outer trapped tubes (MOTTs) in de Sitter spacetime. The first one (Theorem 1) holds more generally, namely for spacetimes satisfying the null convergence condition and containing a timelike conformal Killing vector with a “temporal function”. We show that all marginally outer trapped surfaces (MOTSs) in such a spacetime are unstable. This prevents application of standard results on the propagation of stable MOTSs to MOTTs. On the other hand, it was shown recently, Charlton et al. (minimal surfaces and alternating multiple zetas, arXiv:2407.07130), that for every sufficiently high genus, there exists a smooth, complete family of CMC surfaces embedded in the round 3-sphere \(\mathbb {S}^3\). This family connects a Lawson minimal surface with a doubly covered geodesic 2-sphere. We show (Theorem 2) by a simple scaling argument that this result translates to an existence proof for complete MOTTs with CMC sections in de Sitter spacetime. Moreover, the area of these sections increases strictly monotonically. We compare this result with an area law obtained before for holographic screens.
期刊介绍:
The aim of Letters in Mathematical Physics is to attract the community''s attention on important and original developments in the area of mathematical physics and contemporary theoretical physics. The journal publishes letters and longer research articles, occasionally also articles containing topical reviews. We are committed to both fast publication and careful refereeing. In addition, the journal offers important contributions to modern mathematics in fields which have a potential physical application, and important developments in theoretical physics which have potential mathematical impact.