{"title":"由 Goss Zeta 函数细化满足的无穷阶线性差分方程","authors":"Su Hu, Min-Soo Kim","doi":"10.1007/s12188-024-00284-2","DOIUrl":null,"url":null,"abstract":"<div><p>At the international congress of mathematicians in 1900, Hilbert claimed that the Riemann zeta function <span>\\(\\zeta (s)\\)</span> is not the solution of any algebraic ordinary differential equations on its region of analyticity. Let <i>T</i> be an infinite order linear differential operator introduced by Van Gorder in 2015. Recently, Prado and Klinger-Logan [9] showed that the Hurwitz zeta function <span>\\(\\zeta (s,a)\\)</span> formally satisfies the following linear differential equation </p><div><div><span>$$\\begin{aligned} T\\left[ \\zeta (s,a) - \\frac{1}{a^s}\\right] = \\frac{1}{(s-1)a^{s-1}}. \\end{aligned}$$</span></div></div><p>Then in [6], by defining <span>\\(T_{p}^{a}\\)</span>, a <i>p</i>-adic analogue of Van Gorder’s operator <i>T</i>, we constructed the following convergent infinite order linear differential equation satisfied by the <i>p</i>-adic Hurwitz-type Euler zeta function <span>\\(\\zeta _{p,E}(s,a)\\)</span></p><div><div><span>$$\\begin{aligned} T_{p}^{a}\\left[ \\zeta _{p,E}(s,a)-\\langle a\\rangle ^{1-s}\\right] =\\frac{1}{s-1}\\left( \\langle a-1 \\rangle ^{1-s}-\\langle a\\rangle ^{1-s}\\right) . \\end{aligned}$$</span></div></div><p>In this paper, we consider this problem in the positive characteristic case. That is, by introducing <span>\\(\\zeta _{\\infty }(s_{0},s,a,n)\\)</span>, a Hurwitz type refinement of Goss zeta function, and an infinite order linear difference operator <i>L</i>, we establish the following difference equation </p><div><div><span>$$\\begin{aligned} L\\left[ \\zeta _{\\infty }\\left( \\frac{1}{T},s,a,0\\right) \\right] =\\sum _{\\gamma \\in \\mathbb {F}_{q}} \\frac{1}{\\langle a+\\gamma \\rangle ^{s}}. \\end{aligned}$$</span></div></div></div>","PeriodicalId":50932,"journal":{"name":"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg","volume":"94 2","pages":"129 - 143"},"PeriodicalIF":0.4000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Infinite order linear difference equation satisfied by a refinement of Goss zeta function\",\"authors\":\"Su Hu, Min-Soo Kim\",\"doi\":\"10.1007/s12188-024-00284-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>At the international congress of mathematicians in 1900, Hilbert claimed that the Riemann zeta function <span>\\\\(\\\\zeta (s)\\\\)</span> is not the solution of any algebraic ordinary differential equations on its region of analyticity. Let <i>T</i> be an infinite order linear differential operator introduced by Van Gorder in 2015. Recently, Prado and Klinger-Logan [9] showed that the Hurwitz zeta function <span>\\\\(\\\\zeta (s,a)\\\\)</span> formally satisfies the following linear differential equation </p><div><div><span>$$\\\\begin{aligned} T\\\\left[ \\\\zeta (s,a) - \\\\frac{1}{a^s}\\\\right] = \\\\frac{1}{(s-1)a^{s-1}}. \\\\end{aligned}$$</span></div></div><p>Then in [6], by defining <span>\\\\(T_{p}^{a}\\\\)</span>, a <i>p</i>-adic analogue of Van Gorder’s operator <i>T</i>, we constructed the following convergent infinite order linear differential equation satisfied by the <i>p</i>-adic Hurwitz-type Euler zeta function <span>\\\\(\\\\zeta _{p,E}(s,a)\\\\)</span></p><div><div><span>$$\\\\begin{aligned} T_{p}^{a}\\\\left[ \\\\zeta _{p,E}(s,a)-\\\\langle a\\\\rangle ^{1-s}\\\\right] =\\\\frac{1}{s-1}\\\\left( \\\\langle a-1 \\\\rangle ^{1-s}-\\\\langle a\\\\rangle ^{1-s}\\\\right) . \\\\end{aligned}$$</span></div></div><p>In this paper, we consider this problem in the positive characteristic case. That is, by introducing <span>\\\\(\\\\zeta _{\\\\infty }(s_{0},s,a,n)\\\\)</span>, a Hurwitz type refinement of Goss zeta function, and an infinite order linear difference operator <i>L</i>, we establish the following difference equation </p><div><div><span>$$\\\\begin{aligned} L\\\\left[ \\\\zeta _{\\\\infty }\\\\left( \\\\frac{1}{T},s,a,0\\\\right) \\\\right] =\\\\sum _{\\\\gamma \\\\in \\\\mathbb {F}_{q}} \\\\frac{1}{\\\\langle a+\\\\gamma \\\\rangle ^{s}}. \\\\end{aligned}$$</span></div></div></div>\",\"PeriodicalId\":50932,\"journal\":{\"name\":\"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg\",\"volume\":\"94 2\",\"pages\":\"129 - 143\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12188-024-00284-2\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s12188-024-00284-2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
在1900年的国际数学家大会上,希尔伯特声称黎曼zeta函数(\zeta (s)\)不是其解析区域上任何代数常微分方程的解。假设 T 是 Van Gorder 于 2015 年引入的无穷阶线性微分算子。最近,Prado 和 Klinger-Logan [9] 证明了 Hurwitz zeta 函数 \(\zeta (s,a)\) 正式满足下面的线性微分方程 $$\begin{aligned}T\left[ \zeta (s,a) - \frac{1}{a^s}\right] = \frac{1}{(s-1)a^{s-1}}。\end{aligned}$$Then in [6], by defining \(T_{p}^{a}\), a p-adic analogue of Van Gorder's operator T, we constructed the following convergent infinite order linear differential equation satisfied by the p-adic Hurwitz-type Euler zeta function \(\zeta _{p,E}(s,a)\)$$\begin{aligned}.T_{p}^{a}\left[ \zeta _{p,E}(s,a)-\langle a\rangle ^{1-s}\right] =\frac{1}{s-1}\left( \langle a-1 \rangle ^{1-s}-\langle a\rangle ^{1-s}\right) .\end{aligned}$$ 在本文中,我们考虑的是正特征情况下的问题。也就是说,通过引入 \(\zeta _\infty }(s_{0},s,a,n)\), Goss zeta 函数的 Hurwitz 型细化,以及无穷阶线性差分算子 L,我们建立了下面的差分方程 $$\begin{aligned}L\left[ \zeta _{\infty }\left( \frac{1}{T},s,a,0\right) \right] =sum _{\gamma \in \mathbb {F}_{q}}\frac{1}{langle a+\gamma\rangle ^{s}}.\end{aligned}$$
Infinite order linear difference equation satisfied by a refinement of Goss zeta function
At the international congress of mathematicians in 1900, Hilbert claimed that the Riemann zeta function \(\zeta (s)\) is not the solution of any algebraic ordinary differential equations on its region of analyticity. Let T be an infinite order linear differential operator introduced by Van Gorder in 2015. Recently, Prado and Klinger-Logan [9] showed that the Hurwitz zeta function \(\zeta (s,a)\) formally satisfies the following linear differential equation
Then in [6], by defining \(T_{p}^{a}\), a p-adic analogue of Van Gorder’s operator T, we constructed the following convergent infinite order linear differential equation satisfied by the p-adic Hurwitz-type Euler zeta function \(\zeta _{p,E}(s,a)\)
In this paper, we consider this problem in the positive characteristic case. That is, by introducing \(\zeta _{\infty }(s_{0},s,a,n)\), a Hurwitz type refinement of Goss zeta function, and an infinite order linear difference operator L, we establish the following difference equation
期刊介绍:
The first issue of the "Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg" was published in the year 1921. This international mathematical journal has since then provided a forum for significant research contributions. The journal covers all central areas of pure mathematics, such as algebra, complex analysis and geometry, differential geometry and global analysis, graph theory and discrete mathematics, Lie theory, number theory, and algebraic topology.