{"title":"ALG13相关癫痫:当前见解和未来研究方向","authors":"Peng Gao, Haoran Chen, Yangyang Sun, Xin Qian, Tao Sun, Yuhan Fan, Jing Zhang","doi":"10.1007/s11064-024-04300-y","DOIUrl":null,"url":null,"abstract":"<div><p>The <i>ALG13</i> gene encodes a subunit of the uridine diphosphate-N-acetylglucosamine (UDP-GlcNAc) transferase enzyme, which plays a key role in the N-linked glycosylation pathway. This pathway involves the attachment of carbohydrate structures to asparagine (Asn) residues in proteins within the endoplasmic reticulum, by which N-glycosylated proteins produced participate a wide range of processes such as electrical gradients formation and neurotransmission. Mutations in the <i>ALG13</i> gene have been identified as a causative factor for congenital disorders of glycosylation (CDG) and have been frequently associated with epilepsy in affected individuals. Several studies have demonstrated a strong correlation between abnormal N-glycosylation due to <i>ALG13</i> deficiency and the onset of epilepsy. Despite these findings, the precise role of <i>ALG13</i> in the pathogenesis of epilepsy remains unclear. This review provides a comprehensive overview of the current literature on <i>ALG13-</i>related disorders, with a focus on recent evidence regarding its role in epilepsy development and progression. Future research directions are also proposed to further elucidate the molecular mechanisms underlying this association.</p></div>","PeriodicalId":719,"journal":{"name":"Neurochemical Research","volume":"50 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ALG13-Related Epilepsy: Current Insights and Future Research Directions\",\"authors\":\"Peng Gao, Haoran Chen, Yangyang Sun, Xin Qian, Tao Sun, Yuhan Fan, Jing Zhang\",\"doi\":\"10.1007/s11064-024-04300-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The <i>ALG13</i> gene encodes a subunit of the uridine diphosphate-N-acetylglucosamine (UDP-GlcNAc) transferase enzyme, which plays a key role in the N-linked glycosylation pathway. This pathway involves the attachment of carbohydrate structures to asparagine (Asn) residues in proteins within the endoplasmic reticulum, by which N-glycosylated proteins produced participate a wide range of processes such as electrical gradients formation and neurotransmission. Mutations in the <i>ALG13</i> gene have been identified as a causative factor for congenital disorders of glycosylation (CDG) and have been frequently associated with epilepsy in affected individuals. Several studies have demonstrated a strong correlation between abnormal N-glycosylation due to <i>ALG13</i> deficiency and the onset of epilepsy. Despite these findings, the precise role of <i>ALG13</i> in the pathogenesis of epilepsy remains unclear. This review provides a comprehensive overview of the current literature on <i>ALG13-</i>related disorders, with a focus on recent evidence regarding its role in epilepsy development and progression. Future research directions are also proposed to further elucidate the molecular mechanisms underlying this association.</p></div>\",\"PeriodicalId\":719,\"journal\":{\"name\":\"Neurochemical Research\",\"volume\":\"50 1\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurochemical Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11064-024-04300-y\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurochemical Research","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s11064-024-04300-y","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
ALG13-Related Epilepsy: Current Insights and Future Research Directions
The ALG13 gene encodes a subunit of the uridine diphosphate-N-acetylglucosamine (UDP-GlcNAc) transferase enzyme, which plays a key role in the N-linked glycosylation pathway. This pathway involves the attachment of carbohydrate structures to asparagine (Asn) residues in proteins within the endoplasmic reticulum, by which N-glycosylated proteins produced participate a wide range of processes such as electrical gradients formation and neurotransmission. Mutations in the ALG13 gene have been identified as a causative factor for congenital disorders of glycosylation (CDG) and have been frequently associated with epilepsy in affected individuals. Several studies have demonstrated a strong correlation between abnormal N-glycosylation due to ALG13 deficiency and the onset of epilepsy. Despite these findings, the precise role of ALG13 in the pathogenesis of epilepsy remains unclear. This review provides a comprehensive overview of the current literature on ALG13-related disorders, with a focus on recent evidence regarding its role in epilepsy development and progression. Future research directions are also proposed to further elucidate the molecular mechanisms underlying this association.
期刊介绍:
Neurochemical Research is devoted to the rapid publication of studies that use neurochemical methodology in research on nervous system structure and function. The journal publishes original reports of experimental and clinical research results, perceptive reviews of significant problem areas in the neurosciences, brief comments of a methodological or interpretive nature, and research summaries conducted by leading scientists whose works are not readily available in English.