Nermine Hendy;Akram Al-Hourani;Thomas Kraus;Maximilian Schandri;Markus Bachmann;Haytham M. Fayek
{"title":"利用可变空频滤波器缓解合成孔径雷达中的窄带射频干扰","authors":"Nermine Hendy;Akram Al-Hourani;Thomas Kraus;Maximilian Schandri;Markus Bachmann;Haytham M. Fayek","doi":"10.1109/LGRS.2024.3496753","DOIUrl":null,"url":null,"abstract":"Radio frequency interference (RFI) in synthetic aperture radar (SAR) is a daunting challenge, affecting both sensing reliability and image quality. To ensure that SAR remains a powerful tool for Earth observation, this letter presents a 2-D variable attenuation space (azimuth)-frequency filtration (VASFF) method. This framework leverages the time-frequency characteristics of Level-0 SAR data, the RFI power profile, estimated RFI signal parameters, and the SAR antenna pattern to design a novel variable filter. Signal power localization estimates the interference source’s relative position, facilitating filter application. Simulated results, obtained using our open-source emulator, SEMUS, to generate both clean and interference-contaminated raw SAR data, demonstrate that the proposed filter achieves a 2 dB improvement over traditional notch filtering. The framework is further tested on real-life interference events on TerraSAR-X revealing previously obscured image details, validating the framework’s effectiveness.","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Narrow-Band RFI Mitigation in Synthetic Aperture Radars Using Variable Space-Frequency Filter\",\"authors\":\"Nermine Hendy;Akram Al-Hourani;Thomas Kraus;Maximilian Schandri;Markus Bachmann;Haytham M. Fayek\",\"doi\":\"10.1109/LGRS.2024.3496753\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Radio frequency interference (RFI) in synthetic aperture radar (SAR) is a daunting challenge, affecting both sensing reliability and image quality. To ensure that SAR remains a powerful tool for Earth observation, this letter presents a 2-D variable attenuation space (azimuth)-frequency filtration (VASFF) method. This framework leverages the time-frequency characteristics of Level-0 SAR data, the RFI power profile, estimated RFI signal parameters, and the SAR antenna pattern to design a novel variable filter. Signal power localization estimates the interference source’s relative position, facilitating filter application. Simulated results, obtained using our open-source emulator, SEMUS, to generate both clean and interference-contaminated raw SAR data, demonstrate that the proposed filter achieves a 2 dB improvement over traditional notch filtering. The framework is further tested on real-life interference events on TerraSAR-X revealing previously obscured image details, validating the framework’s effectiveness.\",\"PeriodicalId\":91017,\"journal\":{\"name\":\"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society\",\"volume\":\"22 \",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10750832/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10750832/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Narrow-Band RFI Mitigation in Synthetic Aperture Radars Using Variable Space-Frequency Filter
Radio frequency interference (RFI) in synthetic aperture radar (SAR) is a daunting challenge, affecting both sensing reliability and image quality. To ensure that SAR remains a powerful tool for Earth observation, this letter presents a 2-D variable attenuation space (azimuth)-frequency filtration (VASFF) method. This framework leverages the time-frequency characteristics of Level-0 SAR data, the RFI power profile, estimated RFI signal parameters, and the SAR antenna pattern to design a novel variable filter. Signal power localization estimates the interference source’s relative position, facilitating filter application. Simulated results, obtained using our open-source emulator, SEMUS, to generate both clean and interference-contaminated raw SAR data, demonstrate that the proposed filter achieves a 2 dB improvement over traditional notch filtering. The framework is further tested on real-life interference events on TerraSAR-X revealing previously obscured image details, validating the framework’s effectiveness.