基于改进型超像素模块和 DeepLab V3+ 的两阶段溢油探测方法(使用合成孔径雷达图像

Lingxiao Cheng;Ying Li;Kangjia Zhao;Bingxin Liu;Yuanheng Sun
{"title":"基于改进型超像素模块和 DeepLab V3+ 的两阶段溢油探测方法(使用合成孔径雷达图像","authors":"Lingxiao Cheng;Ying Li;Kangjia Zhao;Bingxin Liu;Yuanheng Sun","doi":"10.1109/LGRS.2024.3508020","DOIUrl":null,"url":null,"abstract":"The application of deep learning in synthetic aperture radar (SAR) oil spill detection often faces challenges such as speckle noise and limited data volume. To address these issues, this article proposes a two-stage oil spill detection method, SD-OIL, which consists of a superpixel generation module (S3G), and a semantic segmentation model, DeepLab V3+ (the implementation process can be seen at \n<uri>https://github.com/GeminiCheng/ResearchCode</uri>\n). The first stage emphasizes superpixel generation, where S3G innovatively employs social support analysis and spectral angle mapping to develop a pixel-based social support quantification model that considers both individual and community perspectives, facilitating effective superpixel generation. In the semantic segmentation stage, the output from S3G enhances the segmentation performance of DeepLab V3+. Experimental results show that SD-OIL surpasses numerous existing segmentation-based oil spill detection methods, achieving an mIoU of 91.69%. The results also indicate that the S3G module significantly improves the accuracy of oil spill detection.","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Two-Stage Oil Spill Detection Method Based on an Improved Superpixel Module and DeepLab V3+ Using SAR Images\",\"authors\":\"Lingxiao Cheng;Ying Li;Kangjia Zhao;Bingxin Liu;Yuanheng Sun\",\"doi\":\"10.1109/LGRS.2024.3508020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The application of deep learning in synthetic aperture radar (SAR) oil spill detection often faces challenges such as speckle noise and limited data volume. To address these issues, this article proposes a two-stage oil spill detection method, SD-OIL, which consists of a superpixel generation module (S3G), and a semantic segmentation model, DeepLab V3+ (the implementation process can be seen at \\n<uri>https://github.com/GeminiCheng/ResearchCode</uri>\\n). The first stage emphasizes superpixel generation, where S3G innovatively employs social support analysis and spectral angle mapping to develop a pixel-based social support quantification model that considers both individual and community perspectives, facilitating effective superpixel generation. In the semantic segmentation stage, the output from S3G enhances the segmentation performance of DeepLab V3+. Experimental results show that SD-OIL surpasses numerous existing segmentation-based oil spill detection methods, achieving an mIoU of 91.69%. The results also indicate that the S3G module significantly improves the accuracy of oil spill detection.\",\"PeriodicalId\":91017,\"journal\":{\"name\":\"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society\",\"volume\":\"22 \",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10770231/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10770231/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Two-Stage Oil Spill Detection Method Based on an Improved Superpixel Module and DeepLab V3+ Using SAR Images
The application of deep learning in synthetic aperture radar (SAR) oil spill detection often faces challenges such as speckle noise and limited data volume. To address these issues, this article proposes a two-stage oil spill detection method, SD-OIL, which consists of a superpixel generation module (S3G), and a semantic segmentation model, DeepLab V3+ (the implementation process can be seen at https://github.com/GeminiCheng/ResearchCode ). The first stage emphasizes superpixel generation, where S3G innovatively employs social support analysis and spectral angle mapping to develop a pixel-based social support quantification model that considers both individual and community perspectives, facilitating effective superpixel generation. In the semantic segmentation stage, the output from S3G enhances the segmentation performance of DeepLab V3+. Experimental results show that SD-OIL surpasses numerous existing segmentation-based oil spill detection methods, achieving an mIoU of 91.69%. The results also indicate that the S3G module significantly improves the accuracy of oil spill detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信