基于编码的多通道合成孔径雷达数据压缩

Michele Martone;Nicola Gollin;Gerhard Krieger;Ernesto Imbembo;Paola Rizzoli
{"title":"基于编码的多通道合成孔径雷达数据压缩","authors":"Michele Martone;Nicola Gollin;Gerhard Krieger;Ernesto Imbembo;Paola Rizzoli","doi":"10.1109/LGRS.2024.3510433","DOIUrl":null,"url":null,"abstract":"Multichannel synthetic aperture radar (MC-SAR) allows for high-resolution imaging of a wide swath (HRWS), at the cost of acquiring and downlinking a significantly larger amount of data, compared with conventional SAR systems. In this letter, we discuss the potential of efficient data volume reduction (DVR) for MC-SAR. Specifically, we focus on methods based on transform coding (TC) and linear predictive coding (LPC), which exploit the redundancy introduced in the raw data by the finer azimuth sampling peculiar to the MC system. The proposed approaches, in combination with a variable-bit quantization, allow for the optimization of the resulting performance and data rate. We consider three exemplary yet realistic MC-SAR systems, and we conduct simulations and analyses on synthetic SAR data considering different radar backscatter distributions, which demonstrate the effectiveness of the proposed methods.","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10772623","citationCount":"0","resultStr":"{\"title\":\"Coding-Based Data Compression for Multichannel SAR\",\"authors\":\"Michele Martone;Nicola Gollin;Gerhard Krieger;Ernesto Imbembo;Paola Rizzoli\",\"doi\":\"10.1109/LGRS.2024.3510433\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multichannel synthetic aperture radar (MC-SAR) allows for high-resolution imaging of a wide swath (HRWS), at the cost of acquiring and downlinking a significantly larger amount of data, compared with conventional SAR systems. In this letter, we discuss the potential of efficient data volume reduction (DVR) for MC-SAR. Specifically, we focus on methods based on transform coding (TC) and linear predictive coding (LPC), which exploit the redundancy introduced in the raw data by the finer azimuth sampling peculiar to the MC system. The proposed approaches, in combination with a variable-bit quantization, allow for the optimization of the resulting performance and data rate. We consider three exemplary yet realistic MC-SAR systems, and we conduct simulations and analyses on synthetic SAR data considering different radar backscatter distributions, which demonstrate the effectiveness of the proposed methods.\",\"PeriodicalId\":91017,\"journal\":{\"name\":\"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society\",\"volume\":\"22 \",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10772623\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10772623/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10772623/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Coding-Based Data Compression for Multichannel SAR
Multichannel synthetic aperture radar (MC-SAR) allows for high-resolution imaging of a wide swath (HRWS), at the cost of acquiring and downlinking a significantly larger amount of data, compared with conventional SAR systems. In this letter, we discuss the potential of efficient data volume reduction (DVR) for MC-SAR. Specifically, we focus on methods based on transform coding (TC) and linear predictive coding (LPC), which exploit the redundancy introduced in the raw data by the finer azimuth sampling peculiar to the MC system. The proposed approaches, in combination with a variable-bit quantization, allow for the optimization of the resulting performance and data rate. We consider three exemplary yet realistic MC-SAR systems, and we conduct simulations and analyses on synthetic SAR data considering different radar backscatter distributions, which demonstrate the effectiveness of the proposed methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信