双流提示的高光谱目标跟踪

IF 8.6 1区 地球科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Rui Yao;Lu Zhang;Yong Zhou;Hancheng Zhu;Jiaqi Zhao;Zhiwen Shao
{"title":"双流提示的高光谱目标跟踪","authors":"Rui Yao;Lu Zhang;Yong Zhou;Hancheng Zhu;Jiaqi Zhao;Zhiwen Shao","doi":"10.1109/TGRS.2024.3516833","DOIUrl":null,"url":null,"abstract":"Hyperspectral images, rich in spectral details, offeradvantages for object tracking across diverse scenarios. Current hyperspectral tracking often fine-tunes parameters using pretrained RGB trackers, but this manner is suboptimal due to redundancy in spectral bands and limited training data. Existing hyperspectral trackers also underuse temporal information. To address these issues, we propose a unified spectral-spatiotemporal multimodal dual-stream prompt hyperspectral object tracking, named HDSP. We design a density clustering-based band selection module (BSM) to preserve spectral prompt information efficiently. Using the generated bands and temporal data as multimodal prompts, a dual-stream visual prompter is proposed. Designed multimodal dual-stream visual prompter (MDVP) transforms the multimodal input into a single modality, enhancing the foundational modality’s representation capabilities for hyperspectral tracking. Experiments on hyperspectral videos (HSVs) tracking datasets demonstrate that the proposed tracker achieves state-of-the-art performance. The source code is available at \n<uri>https://github.com/rayyao/HDSP</uri>\n.","PeriodicalId":13213,"journal":{"name":"IEEE Transactions on Geoscience and Remote Sensing","volume":"63 ","pages":"1-12"},"PeriodicalIF":8.6000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hyperspectral Object Tracking With Dual-Stream Prompt\",\"authors\":\"Rui Yao;Lu Zhang;Yong Zhou;Hancheng Zhu;Jiaqi Zhao;Zhiwen Shao\",\"doi\":\"10.1109/TGRS.2024.3516833\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hyperspectral images, rich in spectral details, offeradvantages for object tracking across diverse scenarios. Current hyperspectral tracking often fine-tunes parameters using pretrained RGB trackers, but this manner is suboptimal due to redundancy in spectral bands and limited training data. Existing hyperspectral trackers also underuse temporal information. To address these issues, we propose a unified spectral-spatiotemporal multimodal dual-stream prompt hyperspectral object tracking, named HDSP. We design a density clustering-based band selection module (BSM) to preserve spectral prompt information efficiently. Using the generated bands and temporal data as multimodal prompts, a dual-stream visual prompter is proposed. Designed multimodal dual-stream visual prompter (MDVP) transforms the multimodal input into a single modality, enhancing the foundational modality’s representation capabilities for hyperspectral tracking. Experiments on hyperspectral videos (HSVs) tracking datasets demonstrate that the proposed tracker achieves state-of-the-art performance. The source code is available at \\n<uri>https://github.com/rayyao/HDSP</uri>\\n.\",\"PeriodicalId\":13213,\"journal\":{\"name\":\"IEEE Transactions on Geoscience and Remote Sensing\",\"volume\":\"63 \",\"pages\":\"1-12\"},\"PeriodicalIF\":8.6000,\"publicationDate\":\"2024-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Geoscience and Remote Sensing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10798510/\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Geoscience and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10798510/","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

高光谱图像具有丰富的光谱细节,为不同场景下的目标跟踪提供了优势。目前的高光谱跟踪通常使用预训练的RGB跟踪器对参数进行微调,但由于光谱带的冗余和有限的训练数据,这种方式是次优的。现有的高光谱跟踪器也没有充分利用时间信息。为了解决这些问题,我们提出了一种统一的光谱-时空多模态双流提示高光谱目标跟踪,命名为HDSP。为了有效地保留光谱提示信息,设计了基于密度聚类的波段选择模块(BSM)。利用生成的频带和时间数据作为多模态提示,提出了一种双流视觉提示器。设计的多模态双流视觉提示器(MDVP)将多模态输入转换为单模态,增强了基础模态对高光谱跟踪的表示能力。在高光谱视频(hsv)跟踪数据集上的实验表明,该跟踪器达到了最先进的性能。源代码可从https://github.com/rayyao/HDSP获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hyperspectral Object Tracking With Dual-Stream Prompt
Hyperspectral images, rich in spectral details, offeradvantages for object tracking across diverse scenarios. Current hyperspectral tracking often fine-tunes parameters using pretrained RGB trackers, but this manner is suboptimal due to redundancy in spectral bands and limited training data. Existing hyperspectral trackers also underuse temporal information. To address these issues, we propose a unified spectral-spatiotemporal multimodal dual-stream prompt hyperspectral object tracking, named HDSP. We design a density clustering-based band selection module (BSM) to preserve spectral prompt information efficiently. Using the generated bands and temporal data as multimodal prompts, a dual-stream visual prompter is proposed. Designed multimodal dual-stream visual prompter (MDVP) transforms the multimodal input into a single modality, enhancing the foundational modality’s representation capabilities for hyperspectral tracking. Experiments on hyperspectral videos (HSVs) tracking datasets demonstrate that the proposed tracker achieves state-of-the-art performance. The source code is available at https://github.com/rayyao/HDSP .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Geoscience and Remote Sensing
IEEE Transactions on Geoscience and Remote Sensing 工程技术-地球化学与地球物理
CiteScore
11.50
自引率
28.00%
发文量
1912
审稿时长
4.0 months
期刊介绍: IEEE Transactions on Geoscience and Remote Sensing (TGRS) is a monthly publication that focuses on the theory, concepts, and techniques of science and engineering as applied to sensing the land, oceans, atmosphere, and space; and the processing, interpretation, and dissemination of this information.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信