Mohammad Jooshaki;Sahand Karimi-Arpanahi;R. John Millar;Jaakko Anttila;Matti Lehtonen;Mahmud Fotuhi-Firuzabad
{"title":"配电网中最优开关和配线规划:用快速启发式方法对实用的MILP模型进行基准测试","authors":"Mohammad Jooshaki;Sahand Karimi-Arpanahi;R. John Millar;Jaakko Anttila;Matti Lehtonen;Mahmud Fotuhi-Firuzabad","doi":"10.1109/TPWRS.2024.3517413","DOIUrl":null,"url":null,"abstract":"Optimal placement of switches and tie lines is an integral task in distribution system planning. Owing to the problem complexity and the presence of binary decision variables, using heuristic methods for obtaining a close to optimal switch and tie line plan is a common practice in industry. Efforts to employ mixed-integer linear programming (MILP) to guarantee the solution optimality also tend to sacrifice the modeling accuracy through oversimplifying assumptions to make the problem tractable. Aiming to tackle these challenges, we present an efficient, yet accurate, MILP model for optimal switch and tie line planning. The proposed model avoids common simplifying assumptions in the state-of-the-art MILP models while preserving the solving efficiency. In order to demonstrate the applicability and scalability of the proposed MILP approach, it is applied to multiple test networks, and the results are compared with those of a fast heuristic model. The outcomes not only represent the high efficiency and accuracy of the MILP model but also validate the close to optimality of the heuristic approach developed for practical applications as a module in a commercial distribution system planning toolbox.","PeriodicalId":13373,"journal":{"name":"IEEE Transactions on Power Systems","volume":"40 4","pages":"2860-2872"},"PeriodicalIF":7.2000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal Switch and Tie Line Planning in Distribution Networks: Benchmarking a Practical MILP Model With a Fast Heuristic Approach\",\"authors\":\"Mohammad Jooshaki;Sahand Karimi-Arpanahi;R. John Millar;Jaakko Anttila;Matti Lehtonen;Mahmud Fotuhi-Firuzabad\",\"doi\":\"10.1109/TPWRS.2024.3517413\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Optimal placement of switches and tie lines is an integral task in distribution system planning. Owing to the problem complexity and the presence of binary decision variables, using heuristic methods for obtaining a close to optimal switch and tie line plan is a common practice in industry. Efforts to employ mixed-integer linear programming (MILP) to guarantee the solution optimality also tend to sacrifice the modeling accuracy through oversimplifying assumptions to make the problem tractable. Aiming to tackle these challenges, we present an efficient, yet accurate, MILP model for optimal switch and tie line planning. The proposed model avoids common simplifying assumptions in the state-of-the-art MILP models while preserving the solving efficiency. In order to demonstrate the applicability and scalability of the proposed MILP approach, it is applied to multiple test networks, and the results are compared with those of a fast heuristic model. The outcomes not only represent the high efficiency and accuracy of the MILP model but also validate the close to optimality of the heuristic approach developed for practical applications as a module in a commercial distribution system planning toolbox.\",\"PeriodicalId\":13373,\"journal\":{\"name\":\"IEEE Transactions on Power Systems\",\"volume\":\"40 4\",\"pages\":\"2860-2872\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2024-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Power Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10798576/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Power Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10798576/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Optimal Switch and Tie Line Planning in Distribution Networks: Benchmarking a Practical MILP Model With a Fast Heuristic Approach
Optimal placement of switches and tie lines is an integral task in distribution system planning. Owing to the problem complexity and the presence of binary decision variables, using heuristic methods for obtaining a close to optimal switch and tie line plan is a common practice in industry. Efforts to employ mixed-integer linear programming (MILP) to guarantee the solution optimality also tend to sacrifice the modeling accuracy through oversimplifying assumptions to make the problem tractable. Aiming to tackle these challenges, we present an efficient, yet accurate, MILP model for optimal switch and tie line planning. The proposed model avoids common simplifying assumptions in the state-of-the-art MILP models while preserving the solving efficiency. In order to demonstrate the applicability and scalability of the proposed MILP approach, it is applied to multiple test networks, and the results are compared with those of a fast heuristic model. The outcomes not only represent the high efficiency and accuracy of the MILP model but also validate the close to optimality of the heuristic approach developed for practical applications as a module in a commercial distribution system planning toolbox.
期刊介绍:
The scope of IEEE Transactions on Power Systems covers the education, analysis, operation, planning, and economics of electric generation, transmission, and distribution systems for general industrial, commercial, public, and domestic consumption, including the interaction with multi-energy carriers. The focus of this transactions is the power system from a systems viewpoint instead of components of the system. It has five (5) key areas within its scope with several technical topics within each area. These areas are: (1) Power Engineering Education, (2) Power System Analysis, Computing, and Economics, (3) Power System Dynamic Performance, (4) Power System Operations, and (5) Power System Planning and Implementation.